Devin Maurizio

 Lighting/Electrical OptionR. Mistrick

Williams College

‘62 Center for Theatre \& Dance

Spring 2007
Architectural Engineering
The Pennsylvania State University

Willams College '62 Center For Theater \& Dance

Willamstown, MA

Devin Maurizio
Lighting/Electrical Option

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 1
EXECUTIVE SUMMARY 2
GENERAL BUILDING OVERVIEW 3
Building Statistics: 4
Architecture: 5
System Descriptions: 6
LIGHTING DEPTH 8
Space 1: Main Stage Lobby (A circulation space) 9
General Summary: 9
Existing Conditions: 11
New Design: 20
Summary of Design: 26
Space 2: Center Stage Lobby (A special purpose space) 27
General Summary: 27
Existing Conditions: 29
New Design: 34
Summary of Design: 37
Space 3: Dance Rehearsal Studio (A large work space) 38
General Summary: 38
Existing Conditions: 40
New Design: 48
Secondary Design: 51
Summary of Design: 53
Space 4: Building Facade (AN outdoor space or building facade) 54
General Summary: 54
Existing Conditions: 57
New Design: 63
Summary of Design: 67
ELECTRICAL DEPTH 68
Electrical Systems Overview 69
Space 1: Main Stage Lobby (A Circulation space) 72
General Summary: 72
Existing Conditions: 74
New Design: 77
Space 2: Center Stage Lobby (A special purpose space) 80
General Summary: 80
Existing Conditions: 82
New Design: 85
Space 3: Dance Rehearsal Studio (A large work space) 88
General Summary: 88
Existing Conditions: 90
New Design: 92
Space 4: Building Facade (An outdoor space or building facade) 94
General Summary: 94
Existing Conditions: 97
New Design: 99
Photovoltaic Feasibility Review 101
Energy Efficient Transformer Analysis 108
Protective Device Coordination Study 111
LEED BREADTH 116
(Green Roof Feasibility Review) 116
STRUCTURAL BREADTH 124
(Roof Structure Coordination Review) 124
CONCLUSIONS 131
APPENDIX A (LUMINAIRE SCHEDULES) 132
APPENDIX B (MECHANICAL EQUIPMENT SCHEDULES) 135
APPENDIX C (ELECTRICAL TABLES) 138
APPENDIX D (LUMINAIRE CUT SHEETS) 139APPENDIX E (SINGLE LINE DIAGRAM)

Acknowledgements

I would like to give a special thank you to the following people and organizations for their support throughout the year.

- Randy Wilmot \& William Rawn Associates, for providing me with drawings and specifications when I was somewhat desperate and in need of a helping hand.
- Robert Benson, for allowing me to use his photos of the building. Note: all pictures that are really impressive, © Robert Benson Photography
- Kristen Mathias at Theatre Projects Consultants, Inc.
- Bruce J. Decoteau, Head of Building \& Grounds, for giving me a tour and unlocking all the doors for me when I know he really wanted to go home and enjoy his thanksgiving break
- Don Clark, Utilities Program Manager of the Facilities Department, for his help in obtaining utility information
- Dr. Mistrick
- Ted Dannerth
- Spongebob

Executive Summary

As the culminating proof of the development of knowledge in the architectural engineering field, this analytical document provides an in-depth research study on the existing conditions in the Williams College Center for Theatre \& Dance's lighting and electrical systems and suggests possible alternative design solutions to create an overall successful project, whether that success be measured in dollars or beauty. The Williams College Center for Theatre \& Dance is a 126,000 sq.ft., $\$ 50$ million theatre \& performing arts building, boasting two large professional theatres (shared by students and the community), a state of the art black box theatre, a dance rehearsal studio, and many classrooms and support spaces. Located in Williamstown, Massachusetts, Williams College is a small liberal arts campus in the middle of the rolling Berkshire hills. Also covered in this report are topics on sustainable design and the feasibility of the installation of a green roof onto the Center, taking into account both cost and structural feasibility.

My designs for the lighting in the building, paramount to the visual impact of architecture, have centered around the impression of a single person having control over the inanimate natural environment that surrounds them. Metaphorically, this speaks of the immense power we have to conserve energy and natural resources and to preserve the world we live in. As people walk in and through the building, little hints of this idea are subtly expressed. Although compact fluorescents have had trouble becoming a standard in lighting, due to issues with color temperature, the technology for compact fluorescent lamps has become much better and rivals the very need for incandescent lamps at all. Almost all lighting throughout the building has been specified in my design as compact fluorescent or LED.

Electrical support for the building was designed with safety in mind. With two transformers, rated at double the necessary capacity and a tie-breaker in the main switchgear, any emergency power losses from a single transformer can be picked up by the other and, as they say in the theatre, the show can go on. Energy efficiency and economic utilitarianism was in mind during the design of the systems for this building, making the lighting systems only a small fraction of the total necessary power. Mechanical systems to combat the harsh Massachusetts climates take almost 65% of the total power in the building with a 35 ton air cooled liquid chiller and radiant heating in floors and windows. Several coordination studies have been performed, verifying the safety of the system.

Sustainable design, although a buzz word right now, is the future of the building industry. With an earth unable to support the exponential human growth, energy is becoming a delicate commodity. With building using 70% of the total energy produced in the U.S., an enormous potential exists for building engineers to make a fight against energy depletion. The green roof study performed in this analysis is only one aspect of sustainable design, but with a 7 year payback and over $\$ 1$ million saved over the lifecycle of the building, 'only one aspect' sounds pretty good. We can just image the possibilities as technology and methods improve.

General Building Overview

The Williams College '62 Center for Theater \& Dance is a 126,000 sq.ft. building which consists of two professional stage theatres, a state-of-the-art black box theatre, a dance rehearsal studio, a directors studio, and multiple classrooms, offices, and support rooms. The building is located on Main St. in Williamstown, Massachusetts, in the heart of a college campus that sits in a very rural area. Being covered in a skin of limestone veneer, brick, and glass and aluminum curtain walls, the Center for Theater \& Dance was recently completed in June '06 and cost nearly fifty-four million dollars. The building uses approximately 5\% of Williams College's overall energy consumption and has not attempted LEED certification. Much of the theatrical spaces are illuminated with incandescent 130 v lamps and are kept dimmed when in use to prolong life. The remainder of the building is typically linear and compact fluorescent, and was designed in a very utilitarian way to save costs in the building.

Building Statistics:

Building Name: Williams College '62 Center For Theater \& Dance

Location:
Building Occupant:
Type of Building: Theatrical Performance Space, Offices, and Dance Studios Size:
Stories: $\quad 5 / 6$ (including sub-grade)

Project Team:

Owner Williams College http://www.williams.edu/go/62center/		Lighting Consultant Horton Lees Brogden
http://www.hlblighting.com/		

Construction Dates: April 2003 - June 2005
Cost Information: Total Project Cost $=\$ 54.5$ Million
Building Contract $=\sim \$ 38$ Million
Project Delivery: Design-Bid-Build

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Architecture:

Design \& Function:

- The Main Stage Lobby, a glass cube with strong overhanging roof and dense wood shutters, brings strength of form, warmth of materials, and warmth of natural light to the face of the building on Main Street. If offers an architectural counterpoint to the semi-circular stone walls and the 80' tall fly tower of the Main Stage.
- The publicly accessible passageway from front-of-house to back-ofhouse is marked by a strong change in character and materials.
Beginning with the glass and warm wood of the front lobby, the passage evolves into the glass, metal and steel industrial aesthetic of the Center Stage and its lobby. That aesthetic is continued in the monumental stair that moves one up to the major dance space and in the gradual ramp that moves one down to the rear entrance.
- The interior for the building is everywhere infused with daylight, either through large glass walls modulated by wood shutters in the front Lobby or by skylights creating ever changing patterns of light along circulation routes. Extraordinary views of the campus and surrounding Berkshire Hills are found throughout, particularly from the Lobby and the large Dance Studio.

National Codes Used:

- Massachusetts Energy Code - Chapter 13, Sec. 1307 \& Sec. 1308
- NEC 2005

Zoning Requirements: Zoning requirements are defined by the Williams College master planning committee and is exempt from the Williamstown zoning ordinances.

Building Envelope: Structural CMU block walls with decorative façades. Limestone veneer on the majority of the building, brick on the fly tower and the northwest corner under the dance studio, and glass and aluminum curtain walls at the main theatre lobby and circulation corridor. Though the changes in roof heights are quite dynamic around various parts of the building, they are all flat.

Williams College '62 Center For Theater \& Dance
Williamstown, MA

System Descriptions:

The Williams College ' 62 Center for Theatre \& Dance was a design-bidbuild project that topped out at $\$ 54.5$ million dollars and took just over 2 years to build. It's 5 stories above grade in most locations and has a basement. The building is built on a sloped site and requires a grand staircase along the length of the center of the building to maintain appropriate flow through it.

The electrical distribution system for the Williams College ' 62 Center for Theatre \& Dance is a radial system powered by two 1500 kva transformers provided by the college. Emergency lighting panels are housed in separate generator. Automatic transfer switches control the power transfer in the event of a power loss. Both 480/277v and 208Y/120v systems run throughout the building. Most large mechanical equipment have been provided fused disconnect switches for easy maintenance and flexibility. Lighting control panels have been linked to relay panels for integration into the building automation system. lobby spaces, as well as fluorescent strip and compact fluorescent lighting for other general areas. There is site lighting enough for egress requirements along the walkways to the building, but façade lighting only exists by the deep orange and yellow glow of the main theatre entrance lobby.

The building utilizes a hybrid constant volume and variable air volume cooled liquid chiller services the buildings chilled water needs. An means for hot water. The main theatre lobby on the south end of the building has a hydronic radiant floor that dissipates heat through its slate surface. The corridor are just inside the lobby is heated by a finned-tube radiant heating curtain wall.

The structural system consists of composite steel beams and girders for the floor framing system, topped with concrete slabs on metal decking. The walls throughout the building are braced, lateral resisting frames and the building is supported by conventional concrete spread footings.

The Center for Theatre \& Dance utilizes two levels of fire protection. The
emergency electrical rooms and are backed up by a 100 kw diesel emergency

The lighting system consists of halogen/incandescent lamps in theatrical and forced air system for the majority of space conditioning needs. A 35 ton air incoming steam line from the campus steam distribution system provides the first is a wet system with sprinkler heads throughout the building. In theatrical spaces where efforts were taken to preserve the beauty of the space, concealed sprinkler heads were used. The second system is a fire department hookup, which is controlled by three separate automatic control valves in the main mechanical room in the basement of the west side of the building. The fire department inlet is located by the north entrance to the building and ceiling mounted smoke detectors are located throughout.

Transportation:
The building is serviced by multiple hydraulic elevators and pit lifts used for moving scenery, chair racks, and equipment throughout the theatrical service areas of the building. Pedestrian elevators exist at the Main Stage lobby near the directing studio on the ground floor for easy access to handicapped individuals.

Telecommunications: Ethernet/Phone/AV: All Data/Voice/Coax conduits in the building are fed from room 052, Tel/Data, located in the basement of the 550 seat main theatre. Two data racks house the input/output data streams and are backed up by a UPS. Data and voice inputs are primarily located in offices and the theatrical control room in the 550 seat main theatre. Other inputs are placed at intervals throughout the rest of the building for a flexible data communication system. Most lines are run through conduit and cable trays that run throughout the circulation spaces in the building.

Figure 0.1-'62 Center for Theatre \& Dance Site Plan (During Construction)

Williamstown, MA

Lighting Depth

The following pages outline the performance characteristics of the existing lighting system and detail a new design based on personal concepts and design criteria

Space 1: Main Stage Lobby (A circulation space)

General Summary:

The circulation of the building is made up of 3 defined entry locations and 332 feet of linear serpentine hallway that runs from the south side to the north side that totals 5576 sq.ft. The 1450 sq.ft. southern entry lobby is the signiature entrance of the building, created as a luminous box of aluminum and glass curtainwall. This is the entry for the main theatre space in the building, the 550 seat Main Stage, that is home to both community and college theatre productions. On the inside face of the curtainwall, wood slats were designed as permenant louvers to filter daylight into the lobby and warm up the atmosphere of the materials. A second lobby exists in the middle of the corridor: a 1120 sq.ft. breakout lounge that marks the entrance to the Center Stage theatrical laboratory. A grand staircase moves occupants
 from this breakout lounge to the entrance at the north side of the building, which is one story higher than the southern entrance.

Tasks that will occur in this space are walking (flat and up steps), minimal reading (for tickets purchase transactions), and face-to-face conversation. It will be important to maintain the emotional connotation of the space as is defined by the architecture and creating the glow of the southern lobby.

Existing Conditions:

Lighting - The main lobby has two lighting systems: a series of ceramic metal halide downlights for illuminating the vertical façade of the "glass box" and a second series of halogen uplights for general ambient illumination in the space. The balcony and passageway to the left both have halogen par downlights.

Controls - All of the lighting in the main lobby is connected to the building management system through dimmer panels connected to a Lutron Grafik Eye system, located on the ground floor of the lobby just inside the theatre entrance. The system consists of a Lutron dimming panel, DPA, and two programming interfaces. Corridor lighting is connected to two keyed switches located on the wall to the left of the 550 seat theatre back of house service corridor.

Space Properties - The lobbies and hallway are infused with constant spans of glass. Glass transmittance values throughout the buildings circulation spaces are approximately 62% and were hand measured with an illuminance meter. When the wooden slats are included in this calculation, the transmittance value decreases to approximately 20%. The main lobby is primarily wood paneling with an approximate reflectance value of 45%.

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Figure 1.1 - Floorplan

Space Characteristics:

- Ceiling Height: 24’ - 31’ (pitched ceiling slopes up to exterior)
- Area: 1500 sq. ft. (Lobby, including vestibule)
- Area: 766 sq. ft. (Adjoining Passageway)
- Area: 650 sq. ft. (Balcony)
- Materials: aluminum, glass, wood shutters, slate tile flooring \& stairs

Assumptions about the Space:

- 18 month cleaning cycle
- Very clean
- RCR: ~8
- Horizontal illuminance measured at floor level

Figure 1.2 - Reflected Ceiling Plan (Existing Layout)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
HL-3A	V	1.00	0.90	1.00	0.96	0.86	
$\mathrm{HL}-16$	VI	1.00	0.89	1.00	0.88	0.78	
$\mathrm{HL}-22$	IV	1.00	0.92	1.00	0.96	0.88	
$\mathrm{HL}-23$	V	0.79	0.90	1.00	0.96	0.68	

Table 1.1 - Light Loss Factors (Existing Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
HL-3A	LV Halogen MR16	6	50	300
HL-16	Halogen Bi-Pin	18	350	6300
HL-22	Halogen Par Lamp	14	90	1260
HL-23 (ext)	CMH	22	48	1056
Area $=\frac{2266 \text { System }=}{\text { LPD }(\mathrm{w} / \mathrm{sq} . \mathrm{ft} .)=}$				7860
				3.5

Table 1.2 - Energy Modeling Analysis (Existing Layout) - Note that the CMH fixtures are shown here, but are not counted against the lighting power density

Figure 1.3 - Horizontal Illuminance Values \& Isocontours
Illuminance Summary:
(Lobby)
Average Horizontal Illuminance: 2.92fc Max/Min Ratio: 3.81
(Passageway)
Average Horizontal Illuminance: 12.2fc
Max/Min Ratio: 3.44

Daylighting Conditions:

(June $21^{\text {st }}, \mathbf{1 p m}$, clear sky conditions)

Design Criteria:

Illuminance Criteria - Illuminance requirements for the space are 10fc horizontal and 10fc vertical, according to IESNA Lighting Handbook illuminance criteria for lobby spaces.

Power Allowance - According to the Massachusetts Energy Code 780.CMR.Chapter13, which is compliant and in excess of ASHRAE Standard 90.1-2001, using the space-by-space method, the maximum allowable power allowance is $1.8 \mathrm{w} / \mathrm{ft}^{2}$ for the lobbies and $0.7 \mathrm{w} / \mathrm{ft}^{2}$ for the transition corridors, totaling 3236w.

Aesthetic Quality - The appearance of the space and its luminaires are the first impression a patron has when coming to a performance and is therefore very necessary to consider. Also necessary to consider is the extensive use of wood throughout the space. Warm tones should be used to bring out the warmth of the material.

Uniformity - Uniformity helps to maintain a smooth journey along the corridor. A break in this uniformity at the two lobbies and the grand staircase can help to build a hierarchy of spaces.

Modeling of Faces - Facial modeling will be important in the lobby so that patrons will look good to each other while they are waiting for performances to start or during intermission.

System Control \& Flexibility - Flexibility might be nice in the southern lobby to match performance mood or time of day. Since this is the main entrance to the large 550 seat theatre, this entrance can have very dynamic lighting to impress the patrons as they walk in. During normal daytime use, the space would only really need appropriate task lighting to make up for overcast days.

Daylight Integration \& Control - There’s a significant amount of daylight that penetrates into the space from the east side of the corridor from a continuous strip of windows and a skylight above the central section of the corridor. The southern entrance lobby, in particular, has all three sides made of glass. Energy savings are quite possible all throughout these spaces, as is seen from the previous daylight modeling simulation, showing extremely high illuminance values during the day.

New Design:

Design Concept Narrative:

The design concept, which was paramount to this entry lobby, was the idea of a glowing glass box, which would attract attention from the cars and pedestrians as they passed along the main street of Williamstown. To increase the phenomenological impact of the space, my design seeks to maintain the architectural concept for the outside of the space, a glowing glass box that can be seen from the street, and then create an interior space that's drastically darker than expected. The decrease in lighting levels and the use of blue and purple color tones will set the tone for the audience members as they enter the space, calming them and putting them in a mindset of thoughtful introspection.

To achieve this concept in the space and to attempt to achieve allowable lighting power density values, I intend to implement the following:

1. Install LED strip light projectors between wood shutters and glass facade. The current ceramic metal halide downlights that are being used to illuminate the wood shades, visible from the exterior of the building, can be replaced by linear LED projectors that have a much longer lifespan and provide a more even wash of light, without sacrificing vertical luminance values.
2. Provide very minimal ambient lighting in the main area of the lobby. With the main purpose of the space to be an entry portal to the theatre inside, it seemed to be counterproductive to draw the attention of the occupants of the space up to the ceiling or the floor. The focus of the space can be on the entry doors of the theatre and elsewhere, where necessary.
3. Add a system of fiberoptics in the ceiling to mimic a night sky. The night sky is added as a metaphor to the building's environmentally conscious architecture, while providing just enough light necessary for the occupants in the space. The application of fiberoptics in this capacity significantly reduces the lighting levels in this area of the space, matching the desired effects of the space and maintaining the phenomenological impact.
4. Add low voltage spots at 45 degrees above and to the sides of the entry doors. In the theatre, the best location to light a speaker from is at 45 degrees horizontal and 45 degrees vertical. Whether there are attendants taking tickets from occupants or not, these spots will mimic the theatrical experience awaiting inside, creating either an evenly lit attendant or an emphasized aura around the doors.

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Williams College '62 Center For Theater \& Dance Williamstown, MA

Figure 1.4 - Reflected Ceiling Plan (New Layout)

Light Loss Factors						
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF
D-2	V	1.00	0.90	1.00	0.96	0.86
$\mathrm{D}-3$	VI	1.00	0.89	1.00	0.96	0.85
$\mathrm{D}-4$	V	1.00	0.90	1.00	0.96	0.86
$\mathrm{D}-5$	V	1.00	0.90	1.00	0.96	0.86
$\mathrm{D}-6$	IV	0.85	0.91	1.00	0.96	0.74
$\mathrm{D}-7$	IV	0.85	0.91	1.00	0.96	0.74
$\mathrm{D}-8$	I	0.90	0.96	1.00	0.96	0.83
$\mathrm{D}-9$	IV	0.95	0.91	1.00	0.96	0.83
$\mathrm{D}-10$	IV	0.85	0.91	1.00	0.96	0.74

Table 1.3 - Light Loss Factors (New Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
D-2	LED (ext)	17	48	816
D-3	LED	56	1.15	64.4
D-4	LED	40	8	320
D-5	LED	23	8	184
D-6	CFL	9	28	252
D-7	CFL	12	28	336
D-8	Halogen	3	71	213
D-9	LV MR16	4	50	200
D-10 CFL		2	22	44
Area=		2916	System=	1613.4
		LP	(w/sq.ft.) $=$	0.6

Table 1.4 - Energy Modeling Analysis (New Layout)

Figure 1.5 - Horizontal Illuminance Values \& Isocontours
Illuminance Summary:
(Lobby)
Average Horizontal Illuminance: 5.6fc Max/Min Ratio: 9.8
(Passageway)
Average Horizontal Illuminance: 6.7fc
Max/Min Ratio: 2.3

Summary of Design:

The design in this space provided illumination that ranged from 3 to 13 fc , from the entrance to the theatre doors at the other end of the lobby. This increase in light, coupled with the MR16 spotlights illuminating the vertical surfaces of the theatre doors, creates a path of light that draws the occupants towards their destination. Visual hierarchy of the space was defined, keeping the illuminance levels in other paths, such as the passageway to the left and the corridor to the right, at a level lower than that of the theatre doors.

The phenomenological aspects of the design were realized with the addition of the star field sky and the purple wash on the ceiling of the balcony and from the staircase leading to the upper balcony seating area. The purple illumination on the stairs provides visual interest and links the image of these stairs with the idea of the upstairs balcony, providing psychological direction.

Although not shown, illuminance levels on the stairs ranged between 5 and 10 fc , adequate illuminance for safety code.

Including the fact that much of the lighting in the space has been provided with compact fluorescent and LED sources, I believe the overall system has a very available efficiency. The actual LPD of the space is 0.6 , well below the allowable $1.8 \mathrm{w} / \mathrm{ft}^{2}$. Expanding this concept of energy efficiency to the entire building could help in achieving valuable points on the LEED rating scale, should such an endeavor been warranted.

It should be noted that the downlights in the entry, on both the interior and exterior faces of the building façade have been left out of the analysis, as they are not direct components to the design. In a complete design of the space, these compact fluorescent downlights would need to be included for fire safety compliance. 9 or 18w CFL downlights would be sufficient and are negligible in the LPD calculation.

Space 2: Center Stage Lobby (A special purpose space)

General Summary:

Located just outside the Center Stage black box theatre and in the middle of a long hallway that winds through the entire length of the building, the Center Stage lobby marks the point at which the architect has chosen to change the use of materials from a warm wood glow to a more harsh and technical steel and aluminum. This change was characterized as personifying the learning experience as you travel to the "back of the house" of the theatrical world, where things aren't quite as warm and beautiful as the end result on stage. This breakout space also serves as one of the three entrances to the new construction portion of the building and has quite and extensive square footage of glass, both along the perimeter wall and at the skylight in the ajoining corridor to the north west.

The activities that occur in this space are primarily walking, viewing of artwork, reading, and writing. Careful attention will need to be taken when determining fixture choices in this space to appropriately change the mood of the corridor with the change in material.

Existing Conditions:

Lighting - The center stage lobby, located in the center of the hallway that runs throughout the building, has a series of MR16 accent lights suspended above the tables and lounge chairs. General lighting is provided by compact fluorescent downlights, coming out of the adjoining corridor, and by multi-head halogen PAR lamps, through the area with the skylight. There is a series of compact fluorescent wallwashers that light the wall at the entrance to the emergency exit stairwell.

Controls - All luminaires in the Center Stage breakout lobby are connected to dimming rack DR4 through the building management system. Scene control and zoning are also controlled through the central building management system and integrates a time clock and open loop photosensor control.

Space Properties - The Center Stage lobby has wood paneling on the exterior walls, with a reflectance value of approximately 45\%, and light grey punched metal paneling on the interior walls and ceiling, with a reflectance value of approximately 60%. In the corridor to the north of the Center Stage lobby, there's a skylight above made of fritted glass, with an estimated transmittance value of 0.70 . The floor is made of slate tile with an approximate reflectance value of 33%. Furniture within the space can be seen in the previous photos, but most likely does not have a very long lifespan in the building, so designing to these colors and fabrics is probably not ideal.

Figure 2.1 - Floorplan
Space Characteristics:

- Ceiling Height: 31’ (at skylight), 25’ (at ceiling)
- Area: 2220 sq.ft.
- Materials: aluminum, glass, aluminum paneling, fritted skylight glazing

Assumptions about the Space:

- 18 month cleaning cycle
- Very clean
- RCR: ~ 7.5
- Horizontal illuminance measured at floor level

Figure 2.2 - Reflected Ceiling Plan (reference appendix for luminaire types)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
HL-8	IV	0.85	0.92	1.00	0.97	0.76	
HL-14	I	0.97	0.95	1.00	0.97	0.89	
HL-15	I	0.97	0.95	1.00	0.97	0.89	
HL-20	IV	0.85	0.92	1.00	0.97	0.76	

Table 2.1 - Light Loss Factors (Existing Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
HL-8	42w CFL	14	46	644
HL-14	Halogen Par	7	90	630
HL-15	Halogen Par	11	90	990
HL-20	42w CFL	4	46	184
Area=		2220	System=	2448
		LPD (w/sq.ft.) =		1.1

Table 2.2 - Energy Modeling Analysis (Existing Layout)

Figure 2.3 - Illuminance Levels and Isocontours

Illuminance Summary:

- Average Horizontal Illuminance: 15fc (below skylight)
- Average Horizontal Illuminance: 36fc (lounge/breakout space)
- Average Horizontal Illuminance: 17fc (corridor)

Design Criteria:

Illuminance Criteria - Illuminance requirements for the space are 10fc horizontal and 10fc vertical according to IESNA Lighting Handbook illuminance criteria for lobby spaces. Because it is likely that there may be reading and writing tasks, as students take advantage of the available tables and chairs, horizontal illuminance levels in this are should be increased to at least 30fc.

Power Allowance - According to the Massachusetts Energy Code 780.CMR.Chapter13, which is compliant and in excess of ASHRAE Standard 90.1-2001, using the space-by-space method, the maximum allowable power allowance for this space is $1.8 \mathrm{w} / \mathrm{ft}^{2}(\mathrm{w})$, considering the space to be a general lobby, with an additional $1.0 \mathrm{w} / \mathrm{ft}^{2}$ for accent lighting on artwork.

Aesthetic Quality - The architecture of the building is very respectful of the ideals of the environment, highly infused with wood and slate floors, naturally occurring environmental material. To preserve this original intent, the light fixtures should either meet this requirement or be hidden so the light emanates from the architecture itself. Visual aesthetics can still be obtained, which is definitely an important characteristic of the space, through dynamic lighting and contrasting vertical surfaces.

Uniformity - The space will have a significant amount of daylight during the day, which may or may not be very uniform, due to the glazing being clear. Non-uniformity may actually help to increase the aesthetic appeal of the space.

Modeling of Faces - It is important in a space like this, where people are expected to meet and speak with one another on a very regular basis, to have good facial modeling.

System Control \& Flexibility - Flexibility in this space is very important, as the range of uses changes drastically. At different times, the space may be used as a study lounge, a mere corridor, or a main entrance for theatrical performances.

Daylight Integration \& Control - The infusion of daylight into the space requires some type of control in order to maximize the efficiency of these systems in the building. With an expansive skylight that fills the entire ceiling of the north-west corridor and the clear glazing curtain walls on the east side of the space, significant amounts of daylight will penetrate this space during the day. For most of the year, the lights can probably be kept off due to the large amount of daylight in the space. Also an issue, during the nighttime, the skylight well will be very dark unless somehow lit to open up the space again.

New Design:

Design Concept Narrative:

The design of this space is important, as this is where the architect has chosen to change the use of materials in the corridor. The space is also unique in that it is both a corridor and a lounge, requiring two layers of lighting. There needs to be higher illuminance levels around the lounge chairs and tables to give people the opportunity to do their homework or read. The two tall empty walls behind the lounge area are great locations for paintings or posters about upcoming shows. An important consideration for illumination in this space is the large skylight. By illuminating this during the evening, it will open up the space and give it a much lighter atmosphere; more conducive to the naturalist quality of the architecture. Since the mounting height for any luminaires in this are is extremely high, a source with a long lifespan would be necessary.

To meet this concept and requirements, the following design will:

1. Install compact fluorescent lighting throughout the corridor. Compact fluorescents are highly energy efficient and provide adequate light in high ceiling applications.
2. Add a warmer source lamp above the lounge area. MR16 lamps will provide a little more sparkle and a warmer glow to this area, setting it apart from the rest of the transition space. The stronger cutoff of these sources will also help to delineate between lounge and corridor, hopefully helping to direct traffic through the space.
3. Provide wallwashers for both walls where hanging is available. The wallwashers allow for artwork to be hung and adds illuminance to the area around the lounge.
4. Install LED linear projectors to illuminate the skylight well. By illuminating this skylight well, the space opens up at night and feels much larger than if they skylight well were dark. An LED source wont need to be relamped like a halogen source would and thus reduces maintenance requirements in such a difficult space.

Figure 2.4 - Reflected Ceiling Plan (reference appendix for luminaire types)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
HL-8	IV	0.85	0.92	1.00	0.97	0.76	
HL-20	IV	0.85	0.92	1.00	0.97	0.76	
D-2	V	1.00	0.90	1.00	0.97	0.87	
D-11	IV	0.85	0.91	1.00	0.97	0.75	

Table 2.3 - Light Loss Factors (New Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
HL-8	42w CFL	13	46	598
HL-20	42w CFL	9	46	414
D-2	LED	6	48	288
D-11	50w MR16	5	50	250
Area= 2220 System=				1550
				0.7

Table 2.4 - Energy Modeling Analysis (New Layout)

Figure 2.5 - Illuminance Levels and Isocontours
Illuminance Summary:

- Average Horizontal Illuminance: 8.6fc (below skylight)
- Average Horizontal Illuminance: 27 fc (lounge/breakout space)
- Average Horizontal Illuminance: 16 fc (corridor)

Summary of Design:

The Center Stage lobby and breakout space provided me the opportunity to maintain the concept of the building as a natural expression. All fixtures are recessed, either downlights or wallwashers, and the LED projects that illuminate the skylight well are made from round extruded aluminum and provide good contrast to the sharp edges where the ceiling height changes. Illuminance levels meet the desired requirements for each area, increasing around the lounge chairs and tables to provide more light for reading and writing.

Conceptually, the lighting levels help to provide the originally intended variation of spaces. There was a significant need for visual hierarchy in the space to define it different from just chairs in a corridor. Adjustable downlights could have been specified to provide flexibility, but the dimensions of the space don't provide very much movement away from the initial location of the furniture, making the adjustable portion somewhat unnecessary.

Space 3: Dance Rehearsal Studio (A large work space)

General Summary:

Located on the second floor of the North West corner of the building is a 3200 sq.ft. ($65^{\prime} \times 50$ ') dance rehearsal studio that is surrounded on three sides by soaring glass curtain walls with an impressive view of the rolling landscape. There's 27 feet from floor to ceiling, which takes the room straight to the underside of the roof, leaving the mechanical and lighting systems exposed overheard, while maximizing the volume of the space. The fourth wall of the space, which isn't made of glass, is covered with eight foot tall mirrors and acoustical panels.

Tasks that will most likely occur in this space are very active, including dancing, aerobics, physical presentations, and theatrical rehearsal. These tasks require an amount of light to
 comfortably see and perform, similar to a gymnasium or other athletic facility, but can be reduced because the primary equipment being used in the space is the human body. Consideration needs to be placed on the need for theatrical performance lighting in the space to mimic an actual stage for rehearsal purposes. Also, including this second layer of lighting creates a much more dynamic space and could be used for informal performances should the need arise from other performance spaces being in use. Since most of the walls in the room are glass or mirrors, both the view from the exterior and the direction and spill of light within the space need to be carefully considered, as they will have a serious impact on the overall composition of the space.

Existing Conditions:

Lighting - In the dance rehearsal studio, there are two major permanent lighting systems and one variable pipe-mounted theatrical lighting system. The two permanent lighting systems consist of an indirect linear fluorescent system and a Halogen canister downlight system. Cut sheets for the luminaires and ballasts in these systems are provided at the end of this space's section.

Controls - These systems are controlled on two separate systems within the room. The linear fluorescent pendants are switched along the east wall after the mirrors by five keyed switches and are separated into bi-level switching on two zones: a west zone and an east zone, each consisting of 3 rows of luminaires. The second control system in the space is for the halogen downlights. These are controlled by a dimmer switch on the wall directly to the right of the entry doors that is connected to a dimmer rack located in room 090. The downlights are controlled separately through the dimmer rack in rows for a total of five separate dimmers, allowing for a high level of flexibility in the space. There is also a manually-controlled blackoutshade system on all three curtain walls, allowing the space to be used for performance practice at any time of the day.

Space Properties - The vertical surfaces of the space are primarily made of glass and mirrors. The glass in the space, made of clear glazing, has a transmittance value that was calculated using an illuminance meter to be approximately 0.62 . The mirrors in the space are eight foot tall continuous mirrors. All other walls within the space are made of acoustical panels that are light blue in color, with an approximate reflectance of 36%. The floor is made of sprung wood paneling and is usually covered with a medium blue exercise mat that is approximately two inches thick and approximately 15% reflective. The structural trusses and overhead mechanical system are both visible above the unfinished ceiling. Ductwork is a matte brushed aluminum, assumed approximately 50% reflectance and has some specularity to it.

Rendering (West)

Rendering (East)

Figure 3.1 - Floorplan

Space Characteristics:

- Ceiling Height: 27’
- Area: 3250 sq. ft.
- Materials: Aluminum, Glass, Wood, Acoustical Wallboard

Assumptions about the Space:

- 18 month cleaning cycle
- Very clean
- RCR: ~5
- Horizontal illuminance measured at floor level

Figure 3.2 - Reflected Ceiling Plan (reference Appendix for luminaire types)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
HL-11	II	0.95	0.96	0.88	0.89	0.71	
HL-17	IV	0.95	0.92	1.00	0.89	0.78	

Table 3.1 - Light Loss Factors (Existing Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
HL-11	Linear Fluorescent	21	276	5796
HL-11A	Linear Fluorescent	7	184	1288
HL-17	Halogen Par Lamp	30	90	2700
Area $=\begin{array}{r}3250 \\ \text { LPD } \\ \text { System }= \\ \text { (w/s.ft. })\end{array}=$				9784
				3.0

Table 3.2 - Energy Modeling Analysis (Existing Layout)

Williams College '62 Center For Theater \& Dance Williamstown, MA

Figure 3.3 - Horizontal Cross Section

Figure 3.4 - Vertical Illuminance Grid

Figure 3.5 - Horizontal Illuminance Values \& Isocontours

Illuminance Summary:

- Average Horizontal Illuminance: 30fc
- Max/Min Ratio: 2.3:1
- Average Vertical Illuminance: 39fc
- Max/Min Ratio: 1.4:1

Existing Conditions Summary:

Current lighting conditions meet the requirements for the illuminance levels and uniformity in the space. The lighting power density, at $3.0 \mathrm{w} / \mathrm{ft} 2$, is nearly twice the allowable power density, following ASHRAE 90.1-2004. There seems to be some issues with the use of the space and the available switching controls. An overhead projector faces the north wall of the space that projects onto blackout shades. However, there are no options to switch those rows of lights off during the use of this projector.

Daylighting Conditions:

Figure 3.6 - Illuminance Values \& Isocontours
Illuminance Summary:

- Average Horizontal Illuminance: 950fc
- Max/Min Ratio: 44:1

Rendering (West)

Rendering (East)

Design Criteria:

Illuminance Criteria - Illuminance requirements for the space are 30fc horizontal and $30 f \mathrm{f}$ vertical. Horizontal illuminance is higher than typically recommended, but the space is also a part of an educational facility and may have reading and/or writing tasks within the space. Please note that these criteria can only be applied to general space use. Specialized illuminance levels vary upon necessity of theatrical performance and may vary severely in both directions.

Power Allowance - According to the Massachusetts Energy Code 780.CMR.Chapter13, which is compliant and in excess of ASHRAE Standard 90.1-2001, using the space-by-space method, the maximum allowable power allowance for this space is $1.6 \mathrm{w} / \mathrm{ft}^{2}(5120 \mathrm{w})$, considering the space to be an academic classroom/lecture area. Actual power allowance could probably be higher for the space since it has significant theatrical performing arts activities. However, the code does not specifically cover lighting power densities for theatrical performance spaces.

Aesthetic Quality - Visual interest in the space should be kept at a minimum since the focus should be on the dancers, not the space. However, a high end feel should be maintained, as the culture of dance draws in crowds with a more exquisite taste. In this respect, it may be necessary to provide light from hidden luminaires or to choose luminaires that are very attractive yet unobtrusive.

Direct \& Reflected Glare - As dancers are required to be in specific locations throughout a performance, it is imperative for them to be able to see clearly. Direct and reflected glare could cause serious issues by masking certain locations on the floor or by blinding the dance through the reflected component.

Uniformity - Since dance often is performed by multiple dancers all in unison, it is important to have a high level of uniformity across the space. This will help to enhance the idea of fluid motion throughout the entire body of dancers. In some instances, it may be necessary or beneficial to have varying levels of light across the space for different performances. This introduces the need for a second, variable lighting system. Also, being able to have the center of the space illuminated for performances, while the perimeter hides the viewers will create a much more relaxing environment for the spectators.

Modeling of Faces - Dancers go through arduous makeup processes when getting ready for performances to enhance their facial features. Creating a lighting system that creates beautiful faces throughout the spaces, in any direction, is very important for this system to be effective. Energy and mood are often times direct outputs from the faces and motions of the bodies of the dancers within the performance.

Psychological Aspects - Dance is generally designed to invoke emotion, whether it is a direct emotion such as anger or sorrow, or a passive emotion such as awe or excitement. While the dance itself may be capable of invoking these emotions, a well-designed lighting scheme within the space can dramatically increase these effects. Theatrical lighting concepts should probably be used in this space to provide a system that is dynamic enough for the vast differences in performances that may occur.

System Control \& Flexibility - Dynamic lighting is imperative to creating an effective space for dance performance. Character, emotional attitude, and energy change for every piece of dance that is performed and a lighting system should be available to contribute to and accentuate these differences.

Daylight Integration \& Control - Although a part of system control, the importance of daylighting integration and control in this space warrants its own category. Two and a half of the four walls in the space are all glass, floor to ceiling, introducing an incredible amount of daylight into the space. Direct glare from sunlight isn't as much an issue in the space, since the main glass wall is north facing. However, morning and early evening sun may cause some issues during certain parts of the year. For most of the year, the lights can probably be kept off due to the large amount of daylight in the space.

Williams College '62 Center For Theater \& Dance
Williamstown, MA

New Design:

Design Concept Narrative:

The dance studio is a very utilitarian space with a need for uniform diffuse lighting. The best way to reduce unwanted shadows in the space is to employ indirect lighting. This, however, makes it very difficult to maintain the Massachusetts Energy Code allowable power density of $1.6 \mathrm{w} / \mathrm{ft}^{2}$. The following two designs represent the most efficient indirect system possible (to provide the necessary lighting levels and maintain shadowless lighting) and a direct system (which will seek to provide lighting within the limits of the Massachusetts Energy Code).

My plans to achieve this concept are to:

1. Install energy efficient indirect linear fixtures. 4' T5 lamps have the highest efficiency of the linear fluorescent sources, at 103.6 lumens/watt, higher than T8 lamps, at 92.2 lumens/watt, and T5HO lamps, at 92.6 lumens/watt. Also, the luminaire chosen for the space has an efficiency of 93.0%.
2. Add wedge-shaped reflectors above the linear fluorescent luminaire rows. This keeps the light from being lost in the mechanical system and increases the amount of useable diffuse light that reaches the floor.
3. Switch zones to provide flexibility and necessary switching for projections. I propose to switch the north-most luminaires as a separate zone to allow for better control of the lighting when presentations are being given on that wall.

Figure 3.7 - Reflected ceiling Plan (reference Appendix for luminaire types)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
D-1	II	0.95	0.96	0.98	0.89	0.80	
D-1A	II	0.95	0.96	0.98	0.89	0.80	

Table 3.3 - Light Loss Factors (New Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
D-1	Linear Fluorescent	21	270	5670
D-1A	Linear Fluorescent	7	180	1260
Area $=3250$ System $=$				6930
				2.1

Table 3.4 - Energy Modeling Analysis (New Layout)

Figure 3.8 - Horizontal Illuminance Values \& Isocontours
Illuminance Summary:

- Average Horizontal Illuminance: 37fc
- Max/Min Ratio: 2.5:1

Rendering from exterior

Rendering (North East)

> Williams College ' 62 Center For Theater \& Dance Williamstown, MA

Secondary Design:

Figure 3.9 - Reflected ceiling Plan (reference Appendix for luminaire types)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
D-14	Linear Fluorescent	21	186	3906
D-14A	Linear Fluorescent	7	124	868
Area $=$				3250
	System $=$	4774		
		1.47		

Table 3.5 - Energy Modeling Analysis (Secondary Layout)

Figure 3.10 - Horizontal Illuminance Values \& Isocontours

Figure 3.11 - Horizontal Cross Section

Illuminance Summary:

- Average Horizontal Illuminance: 45fc
- Max/Min Ratio: 2.6

Summary of Design:

The two new designs for the space each both have positive and negative effects on the system, but the indirect lighting system appears to be the best option. The indirect lighting system has a higher power density than the direct system, but with shadows behind a huge distraction to the dancers, it seems imperative to diffuse the light as much as possible through the space. Consecutively, the power densities for the space were calculated using the space-by-space method and some allowances could be made by adjusting power densities of other spaces to provide this space with the amount necessary.

Since supplementary lighting is provided from a pipe grid with theatrical fixtures outside the scope of this project, this lighting systems appears to be adequate for all their needs.

My original intentions had been to investigate photosensor dimming for the space. However, after studying the uses of the space and the daylighting conditions, it seems that it would be beneficial to leave the control of the lighting to the occupants in the space. All the windows have mechanized blackout shades for presentations. There's also the curtain that runs on a track that can be pulled in during the morning and late afternoon when the rising and setting sun shine directly into the space.

Space 4: Building Facade (An outdoor space or building facade)

General Summary:

The façade of the building is currently unlit other than the glowing effects of the interior lighting. There's path lighting at the entry drive for safety, but the rest of the site is relatively unlit as well. The façade heights range from 24 to 80 feet and combine a combination of limestone veneer, glass and aluminum curtainwall, and brick. Most of the façade is surrouned by grass and is not meant to be walked along. However, there are focal points in the façade at defined entrances at the south and north ends of the building, and at a small paved courtyard on the east side. These entrances, especially the southern end, will need to be address in the lighting solution to make sure they stand out as prominent pieces of the architectural language. There's a significant number of trees on the sight which may block the view of building façade lighting and should be incorporated into the analysis to make sure lighting isn't being used in places it wont be seen.

Existing Conditions:

Lighting - The exterior façade is not lit by electric lighting except in areas required by code for egress, such as the entry driveway, emergency lighting for the two main building entrances, and the small exterior patio on the east side of the main lobby. Pathway bollards have been placed around the Main Stage lobby front steps, but must have been a contracted ad-service or change order during the construction process because no bollards have been specified in the construction documents set. Landscape lighting in the small exterior patio, which was specified with tree straps, were in actuality ground mounted and point up towards the tree canopies.

Controls - All exterior lighting is controlled through the building automation system and photocells with low voltage control lines.

Space Properties - The exterior building façade is made up of 3 distinct types of materials: limestone veneer ($\sim 65 \%$), which covers the majority of the building, glass \& aluminum framed windows, and brick ($\sim 26 \%$), which is used for the fly towers of the two main performance theatres. The one exception to this material use is the underside of the thrust roof overhang of the main lobby, which is made of wood paneling ($\sim 45 \%$).

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Figure 4.1 - Site Plan

Space Characteristics:

- Area (Patio): 700 sq.ft.
- Materials: slate tile, concrete, granite curbs, grass
- Relevant Furniture: wooden benches, deciduous trees

Assumptions about the space:

- LLF's for outdoor conditions ~ 0.65
- Horizontal illuminance measure at ground level

Pathway luminaires existed when I visited the site, but no exterior bollards are listed anywhere in the construction documents. (Please note that I have labeled these luminaires on the plans as luminaire type A and can be referenced in the cut sheet appendix as such.)

> Williams College '62 Center For Theater \& Dance Williamstown, MA

Figure 4.2 - Reflected ceiling Plan (reference Appendix for luminaire types)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
HL-23	V	0.79	0.90	1.00	0.96	0.68	
A	IV	---	---	---	---	0.65	
C2	V	---	---	---	---	0.65	

Table 4.1 - Light Loss Factors (Existing Layout)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
HL-23	CMH	22	48	1056
A	CMH	8	62	496
C2	LV MR16	4	50	200
System $=$				
		1752		

Table 4.2 - Energy Modeling Analysis (Existing Layout)

Figure 4.3 - Horizontal Illuminance Values \& Isocontours

Illuminance Summary:

- Average Horizontal Illuminance: 3.3fc (Steps)
- Average Horizontal Illuminance: 2.8fc (Sidewalk)
- Average Horizontal Illuminance: 3.3fc (Patio)

Design Criteria:

Illuminance Criteria - Illuminance suggestions for building entrances is 5fc horizontal and 3fc vertical. Since the building has dark surroundings and light colored materials, illuminance suggestions for building façade are 3fc vertical and must not interfere with pedestrian and vehicular visibility.

Power Allowance - According to the Massachusetts Energy Code 780.CMR.Chapter13, which is compliant and in excess of ASHRAE Standard 90.1-2001, building entrances with canopies can have a maximum power density of $3 \mathrm{w} / \mathrm{ft}^{2}$, building entrances without canopies can have a maximum power density of $33 \mathrm{w} / \mathrm{lf}$ of door, and the façade can have $0.25 \mathrm{w} / \mathrm{ft}^{2}$ of illuminated façade. Also noted here, the code requires that all exterior lights above 100 w must have an efficacy of not less than $60 \mathrm{~lm} / \mathrm{w}$.

Aesthetic Quality - The first thing a person sees when either walking or driving by is the building exterior. To draw them into the building, interesting lighting must catch their attention.

Light Pollution/Trespass - Williamstown, MA is in a somewhat small town rural area. Dark sky compliance in this area seems very important for maintaining the natural beauty of the night.

New Design:

Design Concept Narrative:

The cube that's the entrance to the Main Stage lobby was designed by the architect to be a glowing beacon that caught the attention of the main traffic through Williamstown. If the cube glows evenly and brightly, this will mimic that uniform glass cube the architect was looking for. Also, one major change that I have proposed to the architecture of the space is to rotate the wooden slats against the windows to a 45 degree angle, thus blocking a significant amount of light from entering the space.

A major component of this space connects back to my design concept for the building; integrating a perception of evoked emotion into the static environment of a building. By allowing the occupants of this space to see feedback from their actions, I feel it unifies the living and the non in a symbiotic natural way. In order to produce these concepts, I am proposing the following:

1. Install linear LED projectors between the window mullions and wooden shades. Using LED will require less maintenance for lamp replacement 31 feet above grade. The optics of a linear fixture allow for an even wash against the exterior surfaces of the entry lobby and creates the uniform "glow" effect the architect originally had in mind.
2. Install LED bollards that contain color-changing decorative cap. By adding the decorative LED color-changing cap, the bollards bring life and energy to the entrance walkway, as well as meeting the requirements of the concept of evoked emotion in the building. The luminaires will be customized to include a set of motion sensitive beams. When these beams are broken, it was trigger the following set of bollards to change color slightly. While this change will be very slight, I feel even the smallest amount of influence a person has over their environment has a huge personal psychological impact.
3. Mount landscape lighting in trees and aim down through canopy onto patio. By allowing the light to filter through the canopy of the tree, the light becomes much more diffuse and calming than a bright tree trunk, which is a bright, distracting, vertical surface. The diffuse overhead light is meant to mimic moonlight filtering through the trees, even on the darkest of cloudy nights, to create a place that always feels peaceful and safe.

Figure 4.4 - Reflected ceiling Plan (reference Appendix for luminaire types)

Light Loss Factors							
Fixture Type	Maintenance Category	LLD	LDD	BF	RSDD	Total LLF	
D-2	V	1.00	0.92	1.00	0.96	0.88	
D-12	IV	---	---	---	---	0.65	
D-13	V	---	---	---	---	0.65	

Table 4.3-Light Loss Factors (New Design)

Energy Modeling				
Fixture Type	Lamp Type	Count	Watts/Fixt	Total Watts
D-2	LED	17	48	816
D-12	CMH	14	24	336
D-13	LV MR16	6	50	300
System $=$				
		1452		

Table 4.4 - Energy Modeling Analysis (New Design)

Figure 4.5 - Horizontal Illuminance Values \& Isocontours

Illuminance Summary:

- Average Horizontal Illuminance: 2.9fc (Steps)
- Average Horizontal Illuminance: 7.0fc (Sidewalk)
- Average Horizontal Illuminance: 3.9fc (Patio)

Summary of Design:

The above-detailed design has met my expectations for the lighting concept and performance. The linear LED projectors seems not bright enough in renderings, but real-life mockups have shown that this product is a great candidate for this type of application and is meant for illuminating building facades. I was very please with the Thorn lighting bollards that I specified, as they combined the normal pathway lighting and an integral LED luminous top. This playful luminous top was integral to my design and saves a significant amount of money on the project not having to have them custom built. Illuminance levels are adequate to my desired levels for safety, but if field tests proved the LEDs less bright than in the simulation, the manufacturer provides alternate lamping options for the pathway lighting lamp while maintaining the luminous LED top.

Illuminance and uniformity are acceptable at the patio area. More leafy shadows would be apparent from a deciduous tree with leaves and is the major driving force behind the concept for the canopy mounted landscape lights. This diffuse, textured light will create the effects I had envisioned in this intimate patio seating area.

All power allowances are within the allowable Massachusetts Energy Code values and no lamp was specified outside over 100 w .

Electrical Depth

The following pages detail an in-depth analysis of the electrical systems in the Williams College Center for Theatre \& Dance, including a lighting and distribution panel feeder and branch circuit design, a feasibility study on the application of PV arrays for on-grid building power, and a protective device coordination study.

Electrical Systems Overview

I. Power Distribution Systems

The electrical distribution system for the Williams College '62 Center for Theater \& Dance is a radial system that is powered by two 1500A pad-mounted transformers, located on the west side of the building. These transformers are the access point from the campus-wide distribution system. Once in the building, the system goes through two main distribution panels, with a manual tie breaker linking them. Since this project consists of both a renovation portion (The Adams Memorial Theatre) and a new construction portion (The Center for Theatre \& Dance, built around The Adams Memorial Theatre), it will be necessary to describe the interaction between these two spaces. The existing 600A feeder service for the existing Adams Memorial Theatre was removed and new 480Y/277v and $208 \mathrm{Y} / 120 \mathrm{v}$ systems were brought into the theatre. The 480Y/277v line feeds a single lighting control panel that services the 277v main and ground floor lighting. The 208Y/120v line feeds a 1200A distribution panel that sends power to multiple lighting control panels for the house and theatrical stage lights, as well as a 225 kva rooftop AC unit. There's also both $480 \mathrm{Y} / 277 \mathrm{v}$ and $208 \mathrm{Y} / 120 \mathrm{v}$ systems in the new Center for Theater \& Dance, which are used for similar applications. See Table 1 in Appendix C for a schedule of transformers.

II. Emergency Power System

The building is serviced by a 100 kw diesel sound attenuated vibration-reducing pad-mounted emergency generator, located in the main emergency electrical room on the ground floor. The generator is connected to four automatic transfer switches, which control the overall emergency lighting system in both the Center for Dance \& Theatre and the Adam's Memorial Theatre renovation. Two of the automatic transfer switches control power transfer for the emergency lighting panels and elevators, and the other two switch emergency power for the fire alarm system's "full-bright" panic signal.

III. Overcurrent Protection

The electrical distribution system relies on circuit breakers and fused disconnect switches to provide the overcurrent protection. Most panelboards and switchgear are located within dedicated electrical rooms or closets. Motor control centers are generally located in dedicated mechanical rooms. Large units such as switchgear and motor control centers are in the basement, while smaller panelboards are located in the closets on upper floors. The third floor contains all the dimmer racks for the main theatre and the studio theatre in a shared dimmer room. The dedicated main lighting electrical closets and emergency lighting electrical closets have been separated from each other in all instances.

IV. Lighting Systems

The entry vestibule on the south side of the building uses halogen sources for both interior and exterior lighting. The interior lobby space also uses halogen, but switches to incandescent with quartz accents as the space transitions into the theatre. Most other general lighting away from the main entry to the theatre is either compact fluorescent or linear fluorescent. A detailed list of lamps in the building and their operating characteristics can be found in appendix C .

V. ASHRAE 90.1 Shutoff Requirements

The building is monitored by an energy management control system (EMCS) that optimizes energy consumption while maintaining occupant comfort. This EMCS is connected to relay panels at each lighting panel and maintains a time-clock control device for shutting off electrical lighting within the building and the control of exterior site lighting. This system also has the capability to reduce and shut off motors once the peak demand load has been reached for a month to conserve energy and electricity costs.

Small offices and other rooms throughout the building that are not performance spaces or spaces intended for 24-hour occupancy have been equipped with occupancy sensors for savings in energy consumption.

VI. Power Factor Correction

There are no power factor correction devices used in the electrical system for this building.

VII. Design Considerations

The building does not have an overly large footprint, so there don't seem to be too many concerns about voltage drop from long runs. A consideration that will need to be made is the temperature differential between the basement feeder and any lines run to the top of the 80 ft fly tower of the main stage. It will need to be considered that ballasts will be running at 35 c or above and will affect the output of most fluorescent lamps.

The control for the tie breaker between the two main incoming feeders in the main switchgear may be beneficial to be automatic in the event of significant voltage drop so that if it were to occur during a performance, the performance could still go on with just a slight interruption. Currently, the tie breaker is manual and would require someone to go down in the mechanical room and switch the breaker, increasing the amount of time the building is without primary power.

A lot of consideration needs to be placed on the design of the communications systems throughout the building. The buildings occupancy as an educational facility and as a theatrical performance building increases the need for wired and wireless data transfer for laptops, inter-system controls for a / v integration into overall building and stage performance, and technological expansion. Upgrading a system of this magnitude would be incredibly costly for the college, so looking towards expansion capabilities during construction can save a lot of money in the future.

VIII. NEC Design Load

The total calculated NEC design load was approximately 1400kw. Two 1500kw transformers feed the main distribution panels for the building. I'm assuming that this discrepancy, the amount of available power being twice the design load, has to do with the manual tie breaker between the two sides of the main switchgear. This would allow for one transformer to temporarily carry the load for the entire building until the second transformer could be repaired. The main transformers are rated at 1500 kva , which equates to maximum output amperage of 1805A. This value is less than the rated value of the wire, which is 80% of the ampacity of seven sets of 500 MCM wire, or 2128 A . The wire is adequately sized for the size of the transformers. The two main distribution panels that are fed by the main switchgear both sized appropriately as well. Distribution panel DHB has an 800A trip and is fed by 2 sets of 600MCM wire rated at 840A. Distribution panel DHBB has a 1200A trip and is fed by 4 sets of 500MCM wire rated at 1520A. Detailed calculations for the NEC design load can be found in Appendix D.

IX. Electric Utility Rates

Electric utility is provided by Williams College through their campus-wide distribution system. According to the Utilities Program Director of the Williams College Facilities Department, the Center for Theatre \& Dance is a part of the medium voltage campus-wide distribution system and they do not track peak demand charges for each individual building on this system. The total usage of the building over the past 12 month period (July05-June06), was 1,219,964 kwh at a rate of $\$ 0.084 / \mathrm{kwh}$, including transmission and distribution charges.

X. Communication Systems

Ethernet/Phone/AV: All Data/Voice/Coax conduits in the building are fed from room 052, $\mathrm{Tel} /$ Data, located in the basement of the 550 seat main theatre. Two data racks house the input/output data streams and are backed up by a UPS. Data and voice inputs are primarily located in offices and the theatrical control room in the 550 seat main theatre. Other inputs are placed at intervals throughout the rest of the building for a flexible data communication system. Most lines are run through conduit and cable trays that run throughout the circulation spaces in the building.

Fire Protection: The Center for Theatre \& Dance utilizes two levels of fire protection. The first is a wet system with sprinkler heads throughout the building. In theatrical spaces where efforts were taken to preserve the beauty of the space, concealed sprinkler heads were used. The second system is a fire department hookup that is controlled by three separate automatic control valves in the main mechanical room in the basement of the west side of the building. The fire department inlet is located by the north entrance to the building. Ceiling mounted smoke detectors are located throughout the building.

XI. Documentation Inconsistencies

Note: The MEP consultant on the job has refused to release the panelboard schedules and final electrical drawings. Panelboard schedules are also not included in the construction documents set. Unknown circuits are listed as such and have been assumed fully loaded with a "good practice" loading assumption of 80% of the allowable ampacity of the C/B. It is understood that this will result in an oversized feeder for these panels and in some instances, on existing panels, the design load (A) will not match the circuit breaker or feeder size. Coordination of this sizing was updated for the new design panelboards.

Space 1: Main Stage Lobby (A circulation space)

General Summary:

The circulation of the building is made up of 3 defined entry locations and 332 feet of linear serpentine hallway that runs from the south side to the north side that totals 5576 sq.ft. The 1450 sq.ft. southern entry lobby is the signiature entrance of the building, created as a luminous box of aluminum and glass curtainwall. This is the entry for the main theatre space in the building, the 550 seat Main Stage, that is home to both community and college theatre productions. On the inside face of the curtainwall, wood slats were designed as permenant louvers to filter daylight into the lobby and warm up the atmosphere of the materials. A second lobby exists in the middle of the corridor: a 1120 sq.ft. breakout lounge that marks the entrance to the Center
 Stage theatrical laboratory. A grand staircase moves occupants from this breakout lounge to the entrance at the north side of the building, which is one story higher than the southern entrance.

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Existing Conditions:

Figure 5.1 - Circuiting Plan (Existing Layout)

Existing Conditions Summary:

The lobby currently has two Lutron dimming panels that address all the lighting loads in the space, one for lighting and one for emergency. Luminaires that are shaded are wired for emergency transfer. The Lutron dimming panel has a 12 scene user interface. Both dimmer panels are main lugs only and are protected by the C / B of the panel that serves them. Feeder and C/B information for the feeding panel are provided in the following charts, along with detailed circuiting and zoning information for each. Note that there is a discrepancy between the calculated values for the feeder and C / B size and the information that was listed on the drawings, displayed at the top of the panel schedule. Without more information it is difficult to justify these differences.

Panelboard Schedules \& Feeders

Dimmer Panel - DPA									
208Y/120V 3 Phase 4 Wire, 80A Feed, M.L.O.							Serviced By Panel: DLB, C/B 9		
Fixture Type	Ckt	Zone	Load (W)	Qt	Load Type	Total Load	Max Load	Bkr Size	Phase
Uplight	1	4	350	5	INC/LV	1750	1920	20A - 1P	A
Uplight	2	4	350	5	INC/LV	1750	1920	20A - 1P	B
Uplight	3	4	350	4	INC/LV	1400	1920	20A - 1P	C
Par Down	4	5	90	11	INC/LV	990	1920	20A - 1P	A
Balcony Down	5	6	100	6	INC/LV	600	1920	20A - 1P	B
Exterior Up	6	7	250	6	INC/LV	1500	1920	20A - 1P	C
Exterior Up	7	7	250	6	INC/LV	1500	1920	20A - 1P	A
Exterior Down	8	8	90	4	INC/LV	360	1920	20A - 1P	B
Par Down-AMT	9	9	90	4	INC/LV	360	1920	20A - 1P	C
Lobby Balcony	10	11	50	6	INC/LV	300	1920	20A - 1P	A
Calculation of Design Load Ampacity:									
Connected Load: (x 1.25) growth: (/ 0.80) code:						$\begin{aligned} & 10510 \\ & 13138 \end{aligned}$	------------->	36.5	
Wire Size			Conduit Size				Circuit Breaker		
(4) \#8 AWG + (1) \#10 AWG g			3/4" EMT				50A		

Table 5.1 - Dimmer Panel DPA Schedule (Existing Layout)

Dimmer Panel - EDPA									
120 V 1 Phase 2 Wire, 20A Feed, M.L.O.						Serviced By Panel: EPLGS, C/B 2,4,6,8			
Fixture Type	Ckt	Zone	Load (W)	Qt	Load Type	Total Load	Max Load	Bkr Size	Phase
Uplight	1	1	350	4	INC/LV	1400	1920	20A - 1P	
Par Down-AMT	2	2	90	8	INC/LV	720	1920	20A - 1P	
Balcony Down	3	3	100	5	INC/LV	500	1920	20A - 1P	
Par Down-AMT	4	10	90	4	INC/LV	360	1920	20A-1P	
Calculation of Design Load Ampacity:									
Connected Load: (x 1.25) growth: (/ 0.80) code:						$\begin{array}{r} 2980 \\ 3725 \\ ----------1 \end{array}$	$\begin{aligned} & 10.3 \mathrm{~A} \\ & 12.9 \mathrm{~A} \end{aligned}$		
Wire Size			Conduit Size				Circuit Breaker		
(2) \#14 AWG + (1) \#14 AWG g			1/2" EMT				15A		

Table 5.2 - Emergency Dimmer Panel EDPA Schedule (Existing Layout)

Distribution Panel - DLB				
$\begin{aligned} & \text { 208Y120V, 3P 4W } \\ & \text { 800A M.L.O. } \end{aligned}$			SURFACE MOUNTED MIN. AIC. $=65 \mathrm{~K}$	
Item No.	Item Served	Frame	Breaker	
			Trip	Poles
1	D-2	100	100	3
2	D-5	100	100	3
3	AUDIO COMPANY SWITCH	100	100	3
4	D-A1	100	60	3
5	D-D2	225	200	3
6	D-DR1	100	60	3
7	D-DR2	225	200	3
8	D-D1	100	100	3
9	LUTRON PANEL DPA	225	80	3
10	SPARE	225	200	3
11	SPARE	100	100	3
12	SPACE \& HARDWARE	225		3
13	SPACE \& HARDWARE	100		3

Table 5.3 - Distribution Panelboard DLB Schedule (Existing Layout)

New Design:

Figure 5.2 - Circuiting Plan (New Layout)

New Electrical Conditions Summary:
The new circuiting layout uses almost the same number of dimmer zones and circuits, but the individual loads have been significantly reduced and can be seen on the tables below. I was able to reduce the C/B protecting dimmer panel DPA from 50A to 15A, due to lower wattage lamps such as LEDs and CFLs. All ballasts and drivers have been specified as dimmable. Note the panelboard schedule has been provided for a piece of switchgear, lighting distribution panelboard DLB, as this breaker size changed due to reduced loading on the Lutron dimming panel.

Panelboard Schedules \& Feeders

Dimmer Panel - DPA									
208Y/120V 3 Phase 4 Wire, 20A Feed, M.L.O.							Serviced By Panel: DLB, C/B 9		
Fixture Type	Ckt	Zone	Load (W)	Qt	Load Type	Total Load	Max Load	Bkr Size	Phase
Fiberoptics	1	1	75	3	Fiberoptic	225	1920	20A-1P	A
Lobby Stairs	2	2	8.00/ft	40	LED	320	1920	20A - 1P	B
Exterior Down	3	3	48	17	LED	816	1920	20A-1P	C
Passage Down	4	4	28	6	CFL	168	1920	20A-1P	A
Balcony Down	5	6	28	5	CFL	140	1920	20A-1P	B
Balcony Cove	6	8	1.15/ft	56	LED	65	1920	20A-1P	C
Lobby Signage	7	9	8.00/ft	23	LED	184	1920	20A-1P	A
Lobby Spots	8	10	50	4	INC/LV	200	1920	20A-1P	B
Par Down-AMT	9	11	90	4	INC/LV	360	1920	20A-1P	C
Lobby Vestibule	10	13	22	2	CFL	44	1920	20A-1P	A
Calculation of Design Load Ampacity:									
				Connected Load: ($\times 1.25$) growth: (/ 0.80) code:		$\begin{aligned} & 2522 \\ & 3153 \\ & \hline------- \end{aligned}$	------------------->	$\begin{array}{r} 8.8 \mathrm{~A} \\ 10.9 \mathrm{~A} \end{array}$	
Wire Size			Conduit Size				Circuit Breaker		
(4) \#14 AWG + (1) \#14 AWG g			1/2" EMT				15A		

Table 5.4 - Dimmer Panel DPA Schedule (New Layout)

Dimmer Panel - EDPA									
120 V 1 Phase 2 Wire, 20A Feed, M.L.O.							Serviced By Panel: EPLGS, C/B 2,4,6		
Fixture Type	Ckt	Zone	Load (W)	Qt	Load Type	Total Load	Max Load	Bkr Size	Phase
Passage Down	1	5	28	6	CFL	168	1920	20A-1P	
Balcony Down	2	7	100	6	INC/LV	600	1920	20A-1P	
Par Down-AMT	3	12	90	4	INC/LV	360	1920	20A - 1P	
Calculation of Design Load Ampacity:									
				Connected Load: ($\times 1.25$) growth: (/ 0.80) code:		$\begin{aligned} & 1128 \\ & 1410 \end{aligned}$	-------------->	$\begin{aligned} & 3.9 \mathrm{~A} \\ & 4.9 \mathrm{~A} \end{aligned}$	
Wire Size			Conduit Size				Circuit Breaker		
(2) \#14 AWG + (1) \#14 AWG g			1/2" EMT				15A		

Table 5.5 - Emergency Dimmer Panel EDPA Schedule (New Layout)

Distribution Panel - DLB				
$\begin{aligned} & \text { 208Y120V, 3P 4W } \\ & \text { 800A M.L.O. } \end{aligned}$			SURFACE MOUNTED MIN. AIC. $=65 \mathrm{~K}$	
Item No.	Item Served	Frame	Breaker	
			Trip	Poles
1	D-2	100	100	3
2	D-5	100	100	3
3	AUDIO COMPANY SWITCH	100	100	3
4	D-A1	100	60	3
5	D-D2	225	200	3
6	D-DR1	100	60	3
7	D-DR2	225	200	3
8	D-D1	100	100	3
9	LUTRON PANEL DPA	100	15	3
10	SPARE	225	200	3
11	SPARE	100	100	3
12	SPACE \& HARDWARE	225		3
13	SPACE \& HARDWARE	100		3

Table 5.6 - Distribution Panelboard DLB Schedule (New Layout)

Space 2: Center Stage Lobby (A special purpose space)

General Summary:

Located just outside the Center Stage black box theatre and in the middle of a long hallway that winds through the entire length of the building, the Center Stage lobby marks the point at which the architect has chosen to change the use of materials from a warm wood glow to a more harsh and technical steel and aluminum. This change was characterized as personifying the learning experience as you travel to the "back of the house" of the theatrical world, where things aren't quite as warm and beautiful as the end result on stage. This breakout space also serves as one of the three entrances to the new construction portion of the building and has quite and extensive square footage of glass, both along the perimeter wall and at the skylight in the ajoining corridor to the north west.

Existing Conditions:

Figure 6.1 - Circuiting Plan (Existing Layout)

Williams College '62 Center For Theater \& Dance Williamstown, MA

Panelboard Schedules \& Feeders

Dimmer Rack - DR4									
Location: Dimmer Room \#356 Serviced By: Main Switchgear SB3, Item \#6, w/ 200A C/B								Feeder Size: (4) \#3/0 + (1) \#6G in 2 "C	
Rack No.	Circuit \#	Dimmer Slot	Zone	Description	Fixture Load	Qty	Total Load (W)	Emergency	Panel \#
4	DR4-1	289	1	Cove at Floor 2	2680	1	1280	No	
4	DR4-2	290	1	Cove at Floor 2	2680	1	1400	No	
4	DR4-3	291	2	Cove at Floor 3	2280	1	2280	No	
4	DR4-4	292	3	Track at Stairs	90	4	360	No	
4	DR4-5	293	4	Track at Stairs	90	5	450	No	
4	DR4-6	294	5	DL at Center Stair	100	4	400	Yes	EL3S-21
4	DR4-7	295	6	Jelly Jars	100	16	1600	Yes	EL3S-23
4	DR4-8	296	7	Jelly Jars	100	10	1000	Yes	EL3S-25
4	DR4-9	297	8	Skylight Fixtures	270	3	810	No	
4	DR4-10	298	8	Skylight Fixtures	270	3	810	Yes	EL3S-27
4	DR4-11	299	9	Lobby Grid	90	11	990	No	
4	DR4-12	300	10	SLL 282	100	7	700	Yes	EL3S-29
4	DR4-13	301	11	Second Floor Hallway	100	3	300	Yes	EL3S-22
4	DR4-14	302	11	Second Floor Hallway	46	4	184	No	
4	DR4-15	303	12	Grid Receptacle	575	2	1150	No	
4	DR4-16	304	13	Grid Receptacle	575	2	1150	No	
4	DR4-17	305	14	Grid Receptacle	575	2	1150	No	
4	DR4-18	306	15	Grid Receptacle	575	2	1150	No	
4	DR4-19	307	16	Grid Receptacle	575	2	1150	No	
Total Connected Load: 18314									

Table 6.1 - Dimmer Rack DR4 (Existing Layout)

PANELBOARD S C E E P												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 150A SIZE/TYPE MAIN: 125A M.L.O.			PANEL TAG: LH1N PANEL LOCATION: Electrical Closet \#184 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 22 K OPTIONS: Conductors are: (4) \#1 + (1) \#6G in 2"C		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
unknown	unknown	3545	20A/1P	1	*			2	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	3		*		4	20A/1P	3545	Rec. Dock	unknown
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Main Corr	unknown
unknown	unknown	3545	20A/1P	7	*			8	20A/1P	3545	2nd FI	unknown
unknown	2nd FI Corr	3545	20A/1P	9		*		10	20A/1P	3545	Hall \#091	unknown
unknown	unknown	3545	20A/1P	11			*	12	20A/1P	3545	Waiting Area	unknown
unknown	unknown	3545	20A/1P	13	*			14	20A/1P	322	Lobby East	CFL Downlights
unknown	unknown	3545	20A/1P	15		*		16	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	17			*	18	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	19	*			20	70A/3P	15519	El. Cl. \#184	T4 Xfrm to PL1N
unknown	unknown	3545	20A/1P	21		*		22	-----	15519	---	-------
unknown	unknown	3545	20A/1P	23			*	24	-----	15519	---	--------
unknown	unknown	3545	20A/1P	25	*			26	1P	0	---	Spare
Spare	---	0	1P	27		*		28	1P	0	---	Spare
Spare	---	0	1 P	29			*	30	1P	0	---	Spare
Non-existant	None	0		31	*			32		0	None	Non-existant
Non-existant	None	0		33		*		34		0	None	Non-existant
Non-existant	None	0		35			*	36		0	None	Non-existant
Non-existant	None	0		37	*			38		0	None	Non-existant
Non-existant	None	0		39		*		40		0	None	Non-existant
Non-existant	None	0		41			*	42		0	None	Non-existant
CONNECTED LO CONNECTED LOA CONNECTED LOA	$\begin{aligned} & (K W)-A \\ & (K W)-B \\ & (K W)-C \\ & \hline \end{aligned}$	$\begin{aligned} & 40.66 \\ & 40.33 \\ & 40.33 \end{aligned}$								TOTAL DESIGN POWER FACTOR TOTAL DESIGN	LOAD (KW) LOAD (AMPS)	$\begin{array}{r} 112.86 \\ 1.00 \\ 136 \\ \hline \end{array}$

Table 6.2 - Panelboard Schedule LH1N (Existing Layout)

PANELBOARD S CHEDULE												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 150A SIZE/TYPE MAIN: 125A M.L.O.			PANEL TAG: ELH3N PANEL LOCATION: Emergency Closet \#358 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors are: 2hr Fire Rated (3)\#4 in Metal Sheath.		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	Stair 13	3545	20A/1P	1	*			2	20A/1P	3545	Elev. Pent.	Fluorescent Ltg
Fluorescent Ltg	Stair 13	3545	20A/1P	3		*		4	20A/1P	3545	Scene Shop	HID Canister
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Act Studio	Fluorescent Ltg
unknown	unknown	6651	30A/3P	7	*			8	20A/1P	3545	2nd FI Corr	unknown
--------	---	6651	------	9		*		10	20A/1P	3545	unknown	unknown
--------	---	6651	-----	11			*	12	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	13	*			14	20A/1P	1380	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	15		*		16	20A/1P	3545	unknown	unknown
CFL Downlights	2nd FI Corr	3545	20A/1P	17			*	18	20A/1P	3545	unknown	unknown
CFL Downlights	Lobby East	322	20A/1P	19	*			20	20A/1P	3545	unknown	unknown
Non-existant	None	0		21		*		22		0	None	Non-existant
Non-existant	None	0		23			*	24		0	None	Non-existant
Non-existant	None	0		25	*			26		0	None	Non-existant
Non-existant	None	0		27		*		28		0	None	Non-existant
Non-existant	None	0		29			*	30		0	None	Non-existant
Non-existant	None	0		31	*			32		0	None	Non-existant
Non-existant	None	0		33		*		34		0	None	Non-existant
Non-existant	None	0		35			*	36		0	None	Non-existant
Non-existant	None	0		37	*			38		0	None	Non-existant
Non-existant	None	0		39		*		40		0	None	Non-existant
Non-existant	None	0		41			*	42		0	None	Non-existant
CONNECTED LOA CONNECTED LOA CONNECTED LOA	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 26.08 \\ & 24.38 \\ & 24.38 \end{aligned}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	$\begin{aligned} & \text { LOAD (KW) } \\ & \text { R } \\ & \text { LOAD (AMPS) } \end{aligned}$	$\begin{array}{r} 73.83 \\ 1.00 \\ 89 \\ \hline \end{array}$

Table 6.3 - Panelboard Schedule ELH3N (Existing Layout)

New Design:

Figure 6.2 - Circuiting Plan (New Layout)

Panelboard Schedules \& Feeders

Dimmer Rack - DR4									
Location: Dimmer Room \#356 Serviced By: Main Switchgear SB3, Item \#6, w/ 125A C/B								Feeder Size: (4) $\# 1+(1) \# 6 \mathrm{G}$ in $1.5 " \mathrm{C}$	
Rack No.	Circuit \#	Dimmer Slot	Zone	Description	Fixture Load	Qty	Total Load (W)	Emergency	Panel \#
4	DR4-1	289	1	Cove at Floor 2	2680	1	1280	No	
4	DR4-2	290	1	Cove at Floor 2	2680	1	1400	No	
4	DR4-3	291	2	Cove at Floor 3	2280	1	2280	No	
4	DR4-4	292	3	Track at Stairs	90	4	360	No	
4	DR4-5	293	4	Track at Stairs	90	5	450	No	
4	DR4-6	294	5	DL at Center Stair	100	4	400	Yes	EL3S-21
4	DR4-7	295	6	Jelly Jars	100	16	1600	Yes	EL3S-23
4	DR4-8	296	7	Jelly Jars	100	10	1000	Yes	EL3S-25
4	DR4-9	297	8	Skylight Fixtures	48	3	144	No	
4	DR4-10	298	8	Skylight Fixtures	48	3	144	Yes	EL3S-27
4	DR4-11	299	9	Lobby Grid	50	5	250	No	
4	DR4-12	300	10	SLL 282	100	7	700	Yes	EL3S-29
4	DR4-13	301	11	Second Floor Hallway	100	3	300	Yes	EL3S-22
4	DR4-14	302	11	Second Floor Hallway	46	9	414	No	
4	DR4-15	--------	-----	Removed Receptacles	---------	--	-----	-----	
4	DR4-16	--------	-----	Removed Receptacles	------	-----	-----	-----	
4	DR4-17	--------	-----	Removed Receptacles	--------	-----	-----	-----	
4	DR4-18	--------	-----	Removed Receptacles	---------	-----	-----	-----	
4	DR4-19	--------	-----	Removed Receptacles	---------	-----	-----	-----	

Table 6.4 - Dimmer Rack DR4 (New Layout)

PANELBOARD S C E E P												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 225A SIZE/TYPE MAIN: 175A M.L.O.			PANEL TAG: LH1N PANEL LOCATION: Electrical Closet \#184 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 22 K OPTIONS: Conductors to be: (4) $\# 2 / 0+(1) \# 6 \mathrm{G}$ in 2 " C		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
unknown	unknown	3545	20A/1P	1	*			2	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	3		*		4	20A/1P	3545	Rec. Dock	unknown
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Main Corr	unknown
unknown	unknown	3545	20A/1P	7	*			8	20A/1P	3545	2nd FI	unknown
unknown	2nd FI Corr	3545	20A/1P	9		*		10	20A/1P	3545	Hall \#091	unknown
unknown	unknown	3545	20A/1P	11			*	12	20A/1P	3545	Waiting Area	unknown
unknown	unknown	3545	20A/1P	13	*			14	20A/1P	322	Lobby East	CFL Downlights
unknown	unknown	3545	20A/1P	15		*		16	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	17			*	18	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	19	*			20	70A/3P	15519	El. Cl. \#184	T4 Xfrm to PL1N
unknown	unknown	3545	20A/1P	21		*		22	--	15519	---	---
unknown	unknown	3545	20A/1P	23			*	24	-----	15519	---	--------
unknown	unknown	3545	20A/1P	25	*			26	1P	0	---	Spare
Spare	---	0	1 P	27		*		28	1 P	0	---	Spare
Spare	---	0	1P	29			*	30	1P	0	---	Spare
Non-existant	None	0		31	*			32		0	None	Non-existant
Non-existant	None	0		33		*		34		0	None	Non-existant
Non-existant	None	0		35			*	36		0	None	Non-existant
Non-existant	None	0		37	*			38		0	None	Non-existant
Non-existant	None	0		39		*		40		0	None	Non-existant
Non-existant	None	0		41			*	42		0	None	Non-existant
CONNECTED LOA CONNECTED LOA CONNECTED LO	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	40.66 40.33 40.33								TOTAL DESIGN POWER FACTOR TOTAL DESIGN	LOAD (KW) LOAD (AMPS)	$\begin{array}{r}108.34 \\ 1.00 \\ 130 \\ \hline\end{array}$

Table 6.5 - Panelboard Schedule LH1N (New Layout)

PANELBOARD S CHEDULE												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 150A SIZE/TYPE MAIN: 125A M.L.O.			PANEL TAG: ELH3N PANEL LOCATION: Emergency Closet \#358 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors to be: 2hr Fire Rated (3)\#1 in Metal Sheath.		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	Stair 13	3545	20A/1P	1	*			2	20A/1P	3545	Elev. Pent.	Fluorescent Ltg
Fluorescent Ltg	Stair 13	3545	20A/1P	3		*		4	20A/1P	3545	Scene Shop	HID Canister
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Act Studio	Fluorescent Ltg
unknown	unknown	6651	30A/3P	7	*			8	20A/1P	3545	2nd FI Corr	unknown
--------	---	6651	------	9		*		10	20A/1P	3545	unknown	unknown
--------	---	6651	-----	11			*	12	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	13	*			14	20A/1P	1350	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	15		*		16	20A/1P	3545	unknown	unknown
CFL Downlights	2nd FI Corr	3545	20A/1P	17			*	18	20A/1P	3545	unknown	unknown
CFL Downlights	Lobby East	276	20A/1P	19	*			20	20A/1P	3545	unknown	unknown
Non-existant	None	0		21		*		22		0	None	Non-existant
Non-existant	None	0		23			*	24		0	None	Non-existant
Non-existant	None	0		25	*			26		0	None	Non-existant
Non-existant	None	0		27		*		28		0	None	Non-existant
Non-existant	None	0		29			*	30		0	None	Non-existant
Non-existant	None	0		31	*			32		0	None	Non-existant
Non-existant	None	0		33		*		34		0	None	Non-existant
Non-existant	None	0		35			*	36		0	None	Non-existant
Non-existant	None	0		37	*			38		0	None	Non-existant
Non-existant	None	0		39		*		40		0	None	Non-existant
Non-existant	None	0		41			*	42		0	None	Non-existant
CONNECTED LOA CONNECTED LOA CONNECTED LOA	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 26.00 \\ 24.38 \\ 24.38 \\ \hline \end{array}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	$\begin{aligned} & \text { LOAD (KW) } \\ & \text { R } \\ & \text { LOAD (AMPS) } \end{aligned}$	$\begin{array}{r} 73.74 \\ 1.00 \\ 89 \\ \hline \end{array}$

Table 6.6 - Panelboard Schedule ELH3N (New Layout)

Space 3: Dance Rehearsal Studio (A large work space)

General Summary:

Located on the second floor of the North West corner of the building is a 3200 sq.ft. ($65^{\prime} \times 50^{\prime}$) dance rehearsal studio that is surrounded on three sides by soaring glass curtain walls with an impressive view of the rolling landscape. There's 27 feet from floor to ceiling, which takes the room straight to the underside of the roof, leaving the mechanical and lighting systems exposed overheard, while maximizing the volume of the space. The fourth wall of the space, which isn't made of glass, is covered with eight foot tall mirrors and acoustical panels.

$$
\text { Williams College ' } 62 \text { Center For Theater \& Dance }
$$ Williamstown, MA

Existing Conditions:

Figure 7.1 - Circuiting Plan (Existing Layout)
One panelboard has not been shown due to such a small change in the overall loading of the panel. The incandescent lighting loads, removed from dimmer panel DP-2 panel, reduces the load on panel PHGN, circuit \#76, and makes the 30A 3P breaker unnecessary.

Panelboard Schedules \& Feeders

Dimmer Rack - DR1									
Location: Closet \#090							Feeder Size: 2 Sets (4) $350 \mathrm{MCM}+(1) \# 1 \mathrm{G}$ in (2) 3 "C		
Serviced By: Main Switchgear SB3, Item \#3, w/600A C/B									
Rack No.	Circuit \#	Dimmer Slot	Zone	Description	Lamp Type	Qty	Total Load (W)	Emergency	Panel \#
1	DP1-1	1	1	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-2	2	2	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-3	3	3	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-4	4	4	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-5	5	5	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-6	6	6	SLL 089	100A/1F	1	100	No	
1	DP2-1	1	1	Dance Researsal Downlights	90PAR38/FL	6	540	No	
1	DP2-2	2	2	Dance Researsal Downlights	90PAR38/FL	6	540	No	
1	DP2-3	3	3	Dance Researsal Downlights	90PAR38/FL	6	540	No	
1	DP2-4	4	4	Dance Researsal Downlights	90PAR38/FL	6	540	No	
1	DP2-5	5	5	Dance Researsal Downlights	90PAR38/FL		540	No	
1	DP2-6	6	6	SLL 282	100A/1F	1	100	No	
Total Connected Load: 6650									

Table 7.1 - Dimmer Rack DR1 (Existing Layout)

PANELEOARD SCHEDULE												
VOLTAGE: $480 \mathrm{Y} / 277 \mathrm{~V}, 3 \mathrm{PH}, 4 \mathrm{~W}$ SIZE/TYPE BUS: 225A SIZE/TYPE MAIN: 225A M.L.O.			PANEL TAG: LH3S PANEL LOCATION: Dimmer Room \#356 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors are: (4) $\# 4 / 0+(1) \# 4 \mathrm{G}$ in $2.5^{\prime \prime} \mathrm{C}$		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	2nd FI South	3545	20A/1P	1	*			2	20A/1P	3545	WTF Office	Fluorescent Ltg
Fluorescent Ltg	Black Box	3545	20A/1P	3		*		4	20A/1P	3545	3rd FI South	CFL Downlights
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Scene Shop	HID Canister
unknown	unknown	3545	20A/1P	7	*			8	20A/1P	3545	Scene Shop	Fluorescent Ltg
unknown	unknown	3545	20A/1P	9		*		10	20A/1P	3128	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	11			*	12	20A/1P	2576	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	13	*			14	125A/3P	27713	Ctl Rm \#348	T5 Xfrm to PLS3
unknown	unknown	3545	20A/1P	15		*		16	------	27713	---	---
unknown	unknown	3545	20A/1P	17			*	18	----	27713	---	--------
Spare	---	0	1P	19	*			20	1P	0	---	Spare
Spare	---	0	1P	21		*		22	1P	0	---	Spare
Spare	---	0	1P	23			*	24	1P	0	---	Spare
Spare	---	0	1P	25	*			26	1P	0	---	Spare
Spare	---	0	1P	27		*		28	1P	0	---	Spare
Spare	---	0	1P	29			*	30	1P	0	---	Spare
Spare	---	0	1P	31	*			32	1P	0	---	Spare
Spare	---	0	1P	33		*		34	1 P	0	---	Spare
Spare	---	0	1P	35			*	36	1 P	0	---	Spare
Spare	---	0	1 P	37	*			38	1P	0	---	Spare
Spare	---	0	1P	39		*		40	1P	0	---	Spare
Spare	---	0	1 P	41			*	42	1 P	0	---	Spare
CONNECTED LOAD CONNECTED LO CONNECTED LO	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	45.44 45.02 44.47								TOTAL DESIGN POWER FACTO TOTAL DESIGN	$\begin{aligned} & \text { LOAD (KW) } \\ & \text { R } \\ & \text { LOAD (AMPS) } \end{aligned}$	$\begin{array}{r} 127.20 \\ 1.00 \\ 153 \end{array}$

Table 7.2 - Panelboard Schedule LH3S (Existing Layout)

PANELBOARD STHEULE												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 150A SIZE/TYPE MAIN: 125A M.L.O.			PANEL TAG: ELH3N PANEL LOCATION: Emergency Closet \#358 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors are: 2hr Fire Rated (3)\#4 in Metal Sheath.		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	Stair 13	3545	20A/1P	1	*			2	20A/1P	3545	Elev. Pent.	Fluorescent Ltg
Fluorescent Ltg	Stair 13	3545	20A/1P	3		*		4	20A/1P	3545	Scene Shop	HID Canister
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Act Studio	Fluorescent Ltg
unknown	unknown	6651	30A/3P	7	*			8	20A/1P	3545	2nd FI Corr	unknown
--------	---	6651	------	9		*		10	20A/1P	3545	unknown	unknown
--------	---	6651	-----	11			*	12	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	13	*			14	20A/1P	1380	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	15		*		16	20A/1P	3545	unknown	unknown
CFL Downlights	2nd FI Corr	3545	20A/1P	17			*	18	20A/1P	3545	unknown	unknown
CFL Downlights	Lobby East	322	20A/1P	19	*			20	20A/1P	3545	unknown	unknown
Non-existant	None	0		21		*		22		0	None	Non-existant
Non-existant	None	0		23			*	24		0	None	Non-existant
Non-existant	None	0		25	*			26		0	None	Non-existant
Non-existant	None	0		27		*		28		0	None	Non-existant
Non-existant	None	0		29			*	30		0	None	Non-existant
Non-existant	None	0		31	*			32		0	None	Non-existant
Non-existant	None	0		33		*		34		0	None	Non-existant
Non-existant	None	0		35			*	36		0	None	Non-existant
Non-existant	None	0		37	*			38		0	None	Non-existant
Non-existant	None	0		39		*		40		0	None	Non-existant
Non-existant	None	0		41			*	42		0	None	Non-existant
CONNECTED LOAD CONNECTED LOA CONNECTED LOA	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	26.08 24.38 24.38								TOTAL DESIGN POWER FACTO TOTAL DESIGN	LOAD (KW) LOAD (AMPS)	73.83 1.00 89

Table 7.3 - Panelboard Schedule ELH3N (Existing Layout)

[^0]
New Design:

Figure 7.2 - Circuiting Plan (New Layout)

Panelboard Schedules \& Feeders

Dimmer Rack - DR1									
Location: Closet \#090 Serviced By: Main Switchgear SB3, Item \#3, w/20A C/B								Feeder Size: (4) $\# 12+(1) \# 12$ in $1 / 2^{\prime \prime} \mathrm{C}$	
Rack No.	Circuit \#	Dimmer Slot	Zone	Description	Lamp Type	Qty	Total Load (W)	Emergency	Panel \#
1	DP1-1	1	1	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-2	2	2	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-3	3	3	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-4	4	4	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-5	5	5	Directing Studio Downlights	150PAR38/FL	5	750	No	
1	DP1-6	6	6	SLL 089	100A/1F	1	100	No	
1	DP2-1	--------	-----	Removed DP2 from rack	---------	------	-----	-----	
1	DP2-2	--------	-----	Removed DP2 from rack	---------	-----	--	-----	
1	DP2-3	--------	-----	Removed DP2 from rack	---------	-----	-----	-----	
1	DP2-4	--------	-----	Removed DP2 from rack	---------	-----	-----	--	
1	DP2-5	--------	-----	Removed DP2 from rack	---------	-----	-----	--	
1	DP2-6	--------	-----	Removed DP2 from rack	---------	-----	-----	-----	
Total Connected Load: 3850									

Table 7.4 - Dimmer Rack DR1 (New Layout)

PANELBOARD S CHEDULE												
VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 225A SIZE/TYPE MAIN: 200A M.L.O.			PANEL TAG: LH3S PANEL LOCATION: Dimmer Room \#356 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors are: (4) $\# 3 / 0+(1) \# 6 \mathrm{G}$ in $2 " \mathrm{C}$		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	2nd FI South	3545	20A/1P	1	*			2	20A/1P	3545	WTF Office	Fluorescent Ltg
Fluorescent Ltg	Black Box	3545	20A/1P	3		*		4	20A/1P	3545	3rd FI South	CFL Downlights
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Scene Shop	HID Canister
unknown	unknown	3545	20A/1P	7	*			8	20A/1P	3545	Scene Shop	Fluorescent Ltg
unknown	unknown	3545	20A/1P	9		*		10	20A/1P	2610	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	11			*	12	20A/1P	2970	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	13	*			14	125A/3P	27713	Ctl Rm \#348	T5 Xfrm to PLS3
unknown	unknown	3545	20A/1P	15		*		16	----	27713	---	--------
unknown	unknown	3545	20A/1P	17			*	18	---	27713	---	-------
Spare	---	0	1 P	19	*			20	1P	0	---	Spare
Spare	---	0	1P	21		*		22	1P	0	---	Spare
Spare	---	0	1P	23			*	24	1P	0	---	Spare
Spare	---	0	1P	25	*			26	1 P	0	---	Spare
Spare	---	0	1 P	27		*		28	1 P	0	---	Spare
Spare	---	0	1P	29			*	30	1P	0	---	Spare
Spare	---	0	1P	31	*			32	1P	0	---	Spare
Spare	---	0	1P	33		*		34	1P	0	---	Spare
Spare	---	0	1P	35			*	36	1P	0	---	Spare
Spare	---	0	1P	37	*			38	1P	0	---	Spare
Spare	---	0	1P	39		*		40	1P	0	---	Spare
Spare	---	0	1 P	41			*	42	1 P	0	---	Spare
CONNECTED LOAD CONNECTED LO CONNECTED LO	$\begin{aligned} & (K W)-A \\ & (K W)-B \\ & (K W)-C \\ & \hline \end{aligned}$	$\begin{aligned} & 45.44 \\ & 44.50 \\ & 44.86 \end{aligned}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	$\begin{aligned} & \text { LOAD (KW) } \\ & \text { R } \\ & \text { LOAD (AMPS) } \end{aligned}$	$\begin{array}{r} 127.00 \\ 1.00 \\ 153 \\ \hline \end{array}$

Table 7.5 - Panelboard Schedule LH3S (New Layout)

VOLTAGE: 480Y/277V,3PH,4W SIZE/TYPE BUS: 150A SIZE/TYPE MAIN: 125A M.L.O.			PANEL TAG: ELH3N PANEL LOCATION: Emergency Closet \#358 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors to be: 2hr Fire Rated (3)\#1 in Metal Sheath.		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
Fluorescent Ltg	Stair 13	3545	20A/1P	1	*			2	20A/1P	3545	Elev. Pent.	Fluorescent Ltg
Fluorescent Ltg	Stair 13	3545	20A/1P	3		*		4	20A/1P	3545	Scene Shop	HID Canister
unknown	unknown	3545	20A/1P	5			*	6	20A/1P	3545	Act Studio	Fluorescent Ltg
unknown	unknown	6651	30A/3P	7	*			8	20A/1P	3545	2nd FI Corr	unknown
--------	---	6651	------	9		*		10	20A/1P	3545	unknown	unknown
--------	---	6651	-----	11			*	12	20A/1P	3545	unknown	unknown
unknown	unknown	3545	20A/1P	13	*			14	20A/1P	1350	Dance Studio	Fluorescent Ltg
unknown	unknown	3545	20A/1P	15		*		16	20A/1P	3545	unknown	unknown
CFL Downlights	2nd FI Corr	3545	20A/1P	17			*	18	20A/1P	3545	unknown	unknown
CFL Downlights	Lobby East	276	20A/1P	19	*			20	20A/1P	3545	unknown	unknown
Non-existant	None	0		21		*		22		0	None	Non-existant
Non-existant	None	0		23			*	24		0	None	Non-existant
Non-existant	None	0		25	*			26		0	None	Non-existant
Non-existant	None	0		27		*		28		0	None	Non-existant
Non-existant	None	0		29			*	30		0	None	Non-existant
Non-existant	None	0		31	*			32		0	None	Non-existant
Non-existant	None	0		33		*		34		0	None	Non-existant
Non-existant	None	0		35			*	36		0	None	Non-existant
Non-existant	None	0		37	*			38		0	None	Non-existant
Non-existant	None	0		39		*		40		0	None	Non-existant
Non-existant	None	0		41			*	42		0	None	Non-existant
CONNECTED LOAD CONNECTED LO CONNECTED LO	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	26.00 24.38 24.38								TOTAL DESIGN POWER FACTOR TOTAL DESIGN	LOAD (KW) LOAD (AMPS)	73.74 1.00 89

Table 7.6 - Panelboard Schedule ELH3N (New Layout)

Space 4: Building Facade (An outdoor space or building facade)

General Summary:

The façade of the building is currently unlit other than the glowing effects of the interior lighting. There's path lighting at the entry drive for safety, but the rest of the site is relatively unlit as well. The façade heights range from 24 to 80 feet and combine a combination of limestone veneer, glass and aluminum curtainwall, and brick. Most of the façade is surrouned by grass and is not meant to be walked along. However, there are focal points in the façade at defined entrances at the south and north ends of the building, and at a small paved courtyard on the east side. These entrances, especially the southern end, will need to be address in the lighting solution to make sure they stand out as prominent pieces of the architectural language. There's a significant number of trees on the sight which may block the view of building façade lighting and should be incorporated into the analysis to make sure lighting isn't being used in places it wont be seen.

$$
\begin{aligned}
& \text { Williams College '62 Center For Theater \& Dance } \\
& \text { Williamstown, MA }
\end{aligned}
$$

Existing Conditions:

Figure 8.1 - Circuiting Plan (Existing Layout)

Williams College '62 Center For Theater \& Dance Williamstown, MA

Panelboard Schedules \& Feeders

PANELBOARD SCHEDE												
VOLTAGE: 208Y/120V,3PH,4W SIZE/TYPE BUS: 225A SIZE/TYPE MAIN: 225A C/B			PANEL TAG: PL1S-1 PANEL LOCATION: Electrical Closet \#161 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors are: (4) $\# 4 / 0+(1) \# 4 \mathrm{G}$ in $2.5^{\prime \prime} \mathrm{C}$		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
unknown	unknown	1920	20A/1P	1	*			2	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	3		*		4	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	5			*	6	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	7	*			8	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	9		*		10	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	11			*	12	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	13	*			14	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	15		*		16	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	17			*	18	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	19	*			20	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	21		*		22	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	23			*	24	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	25	*			26	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	27		*		28	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	29			*	30	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	31	*			32	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	33		*		34	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	35			*	36	20A/1P	1920	unknown	unknown
Spare	---	0	1P	37	*			38	1P	0	---	Spare
Spare	---	0	1P	39		*		40	1P	0	---	Spare
Spare	---	0	1 P	41			*	42	1 P	0	---	Spare
CONNECTED LOAD CONNECTED LO CONNECTED LO	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 23.04 \\ & 23.04 \\ & 23.04 \end{aligned}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	_OAD (KW) OAD (AMPS)	$\begin{array}{r} 82.94 \\ 1.00 \\ 230 \\ \hline \end{array}$

Table 8.1 - Panelboard Schedule PL1S (1 of 2) (Existing Layout)

PANELBOARD STCHEL												
VOLTAGE: 208Y/120V,3PH,4W SIZE/TYPE BUS: 225A SIZE/TYPE MAIN: 225A C/B			PANEL TAG: PL1S-2 PANEL LOCATION: Electrical Closet \#161 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors are: (4) $\# 4 / 0+(1) \# 4$ G in $2.5^{\prime \prime} C$		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
unknown	unknown	1920	20A/1P	1	*			2	20A/1P	100	Front Lawn	LV XFMR \#7
unknown	unknown	1920	20A/1P	3		*		4	20A/1P	100	Front Lawn	LV XFMR \#6
unknown	unknown	1920	20A/1P	5			*	6	20A/1P	100	Front Lawn	LV XFMR \#5
LV XFMR \#4	Patio	200	20A/1P	7	*			8	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	9		*		10	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	11			*	12	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	13	*			14	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	15		*		16	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	17			*	18	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	19	*			20	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	21		*		22	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	23			*	24	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	25	*			26	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	27		*		28	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	29			*	30	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	31	*			32	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	33		*		34	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	35			*	36	20A/1P	1920	unknown	unknown
Spare	---	0	1P	37	*			38	1P	0	---	Spare
Spare	---	0	1P	39		*		40	1P	0	---	Spare
Spare	---	0	1 P	41			*	42	1 P	0	---	Spare
CONNECTED LOA CONNECTED LO CONNECTED LO	$\begin{aligned} & (\mathrm{KW})-\mathrm{A} \\ & (\mathrm{KW})-\mathrm{B} \\ & (\mathrm{KW})-\mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 19.50 \\ & 21.22 \\ & 21.22 \end{aligned}$								TOTAL DESIGN POWER FACTOR TOTAL DESIGN	_OAD (KW) OAD (AMPS)	74.33 1.00 206

Table 8.2 - Panelboard Schedule PL1S (2 of 2) (Existing Layout)

Williams College '62 Center For Theater \& Dance Williamstown, MA

New Design:

Figure 8.2 - Circuiting Plan (New Layout)

Williams College '62 Center For Theater \& Dance Williamstown, MA

Panelboard Schedules \& Feeders

PANELBOARD SCHEDULE												
VOLTAGE: 208Y/120V,3PH,4W SIZE/TYPE BUS: 400A SIZE/TYPE MAIN: 300A 3P C/B			PANEL TAG: PL1S-1 PANEL LOCATION: Electrical Closet \#161 PANEL MOUNTING: SURFACE							MIN. C/B AIC: 10K OPTIONS: Conductors to be: (4) $350 \mathrm{MCM}+(1) \# 4 \mathrm{G}$ in $3^{\prime \prime} \mathrm{C}$		
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
unknown	unknown	1920	20A/1P	1	*			2	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	3		*		4	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	5			*	6	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	7	*			8	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	9		*		10	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	11			*	12	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	13	*			14	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	15		*		16	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	17			*	18	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	19	*			20	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	21		*		22	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	23			*	24	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	25	*			26	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	27		*		28	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	29			*	30	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	31	*			32	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	33		*		34	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	35			*	36	20A/1P	1920	unknown	unknown
Spare	---	0	1 P	37	*			38	1 P	0	---	Spare
Spare	---	0	1P	39		*		40	1P	0	---	Spare
Spare	---	0	1 P	41			*	42	1 P	0	---	Spare
CONNECTED LOAD CONNECTED LO CONNECTED LOA	$\begin{aligned} & (K W)-A \\ & (K W)-B \\ & (K W)-C \\ & \hline \end{aligned}$	$\begin{aligned} & 23.04 \\ & 23.04 \\ & 23.04 \end{aligned}$								TOTAL DESIGN POWER FACTO TOTAL DESIGN	$\begin{aligned} & \text { OAD (KW) } \\ & \text { OAD (AMPS) } \end{aligned}$	$\begin{array}{r} 77.41 \\ 1.00 \\ 215 \\ \hline \end{array}$

Table 8.3 - Panelboard Schedule PL1S (1 of 2) (New Layout)

VOLTAGE:	208Y/120V,3PH,4W		PANEL TAG:			PL1S-2				MIN. C/B AIC: 10 K		
SIZE/TYPE BUS:	400A		PANEL LOCATION:			Electrical Closet \#161				OPTIONS:	Conductors to be:	
SIZE/TYPE MAIN:	250A 3P C/B		PANEL MOUNTING:			SURFACE					(4) $250 \mathrm{MCM}+$ (1) \#4G in 2.5 " C	
DESCRIPTION	LOCATION	LOAD (WATTS)	C/B SIZE	POS. NO.	A	B	C	POS. NO.	C/B SIZE	LOAD (WATTS)	LOCATION	DESCRIPTION
unknown	unknown	1920	20A/1P	1	*			2	20A/1P	100	Front Lawn	LV XFMR \#7
CMH	Front Steps	240	20A/1P	3		*		4	20A/1P	100	Front Lawn	LV XFMR \#6
CMH	Patio	96	20A/1P	5			*	6	20A/1P	100	Front Lawn	LV XFMR \#5
LV XFMR \#4	Patio	150	20A/1P	7	*			8	20A/1P	150	Patio	LV XFMR \#3
unknown	unknown	1920	20A/1P	9		*		10	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	11			*	12	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	13	*			14	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	15		*		16	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	17			*	18	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	19	*			20	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	21		*		22	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	23			*	24	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	25	*			26	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	27		*		28	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	29			*	30	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	31	*			32	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	33		*		34	20A/1P	1920	unknown	unknown
unknown	unknown	1920	20A/1P	35			*	36	20A/1P	1920	unknown	unknown
Spare	---	0	1P	37	*			38	1P	0	---	Spare
Spare	---	0	1P	39		*		40	1P	0	---	Spare
Spare	---	0	1 P	41			*	42	1P	0	---	Spare
CONNECTED LOAD (KW) - A		17.68								TOTAL DESIGN LOAD (KW)		67.94
CONNECTED LOAD (KW) - B		19.54								POWER FACTOR		1.00
CONNECTED LOAD (KW) - C		19.40								TOTAL DESIGN LOAD (AMPS)		189

Table 8.4 - Panelboard Schedule PL1S (1 of 2) (New Layout)

Photovoltaic Feasibility Review

Introduction:

The Center for Theatre \& Dance is located in a rather urban college setting and has an underground parking deck located on the north side of the building (shown below, figure \#.\#). The ground level of the parking deck has a layer of parking which is partially covered by a slanted roof, with the remainder of the parking being underground. By taking advantage of this large unused area of space and adding photovoltaic panels across it, Williams College could supply 21.1% of the building's overall energy consumption through renewable energy sources, saving them an average of $\$ 21,580 / \mathrm{yr}$ in energy supply costs (including transmission and distribution savings). Multiple other tax incentives and rebates are available and increase the savings of implementing a photovoltaic system.

Figure 9.1 - Satellite image of parking deck during construction

Relevant Numerical Data for Photovoltaic Feasibility	
Surface area of parking deck	$23,000 \mathrm{ft}^{2}\left(2137.5 \mathrm{~m}^{2}\right)$
Cost of Electricity	$\$ 0.084 / \mathrm{kwh}$
Average Bldg Energy Usage	$1,219,964 \mathrm{kwh} / \mathrm{yr}$

[^1]State and Federal Tax Incentives:
The Massachusetts Division of Energy Resources (DOER), in conjunction with the Commonwealth of Massachusetts, offers the following state tax incentives for the introduction and application of renewable energy sources in commercial buildings. Detailed specifications of these credits can be found in the Renewable Energy \& Distribution Generation Guidebook, April 2001, published by DOER and is officially listed in the Massachusetts General Laws (M.G.L.).

There are also federally regulated tax incentives that are detailed in the US Tax Code (U.S.C. c.26). A brief description of these tax credits are listed below:

1. Corporate Income Tax Deduction

- A business which purchases a qualifying solar or wind-powered "climatic control unit" or "water heating unit" is allowed to deduct from its net income, for state tax purposes, any costs incurred from installing the unit, provided the installation is located in Massachusetts and is used exclusively in the trade or business of the corporation (M.G.L. c.63, sec. 38H.).
- Please note that if you qualify for this deduction you may also qualify for the excise tax benefit described in M.G.L. c.63, sec. 38H(f).

2. Business Investment Tax Credit

- 26 U.S.C.A. 48 (a) allows deduction of up to 10% of cost for investing in, purchasing, or constructing qualifying energy property for business use.

3. Renewable Energy Production Incentive

- Local governmental entities and State entities may apply for an incentive payment from the Department of Energy for electricity produced and sold by new qualifying renewable energy generation facilities. Not-for-profit electric cooperatives that began or begin operations between October 1, 1993 and September 30, 2003 are also eligible. Annual incentive payments may total 1.5 cents per kilowatt-hour.

Feasibility Study:
Energy analysis and payback period calculations were performed using the Photovoltaic Energy Modeling tool, a piece of the Clean Energy Project Analysis Software package, provided by RETScreen International, a clean energy coalition developed through the Canadian National Government.

The program loads weather data for selected cities and uses this information to compute average energy-production rates of user-specified photovoltaic products. Using this energy generation information, the program then computes a cost analysis for the entire system, including system base cost, and outputs a payback period using base cost of energy, utility buyback, and tax incentive information.

Version 3.2
© Minister of Natural Resources Canada 1997-2005
NRCan/CETC - Varennes
Figure 9.2 - Screen Shot of Photovoltaic Specifications \& Power Output Characteristics

Data and cost figures for photovoltaic panels were drawn from BP Solar cut sheets (attached at the end of this section) and from a phone conversation with a BP Solar representative. 1250 panels were used in the calculation, at 1.593 m long x 0.790 m wide, to generate the nominal available power of 218.75 kwp and a necessary surface area of 1620.4 m 2 . The surface area used for calculation is conservative, at 75% of the available area that could be used. This 25% reduction of used surface area was assumed for a worst case scenario and to account for any aesthetic additions the architect may desire to hide the addition of photovoltaics to the roof. If the entire roof area were to be covered in photovoltaic panels, the nominal available power would increase to 288.00 kwp and would not significantly change the payback period.

Financial Feasibility					
			Calculate energy production cost?	yes/no	No
Pre-tax IRR and ROI	\%	8.4\%			
After-tax IRR and ROI	\%	8.4\%	Calculate GHG reduction cost?	yes/no	No
Simple Payback	yr	17.6			
Year-to-positive cash flow	yr	13.7	Project equity	\$	265,403
Net Present Value - NPV	\$	$(13,680)$	Project debt	\$	265,403
Annual Life Cycle Savings	\$	$(1,393)$	Debt payments	\$/yr	22,774
Benefit-Cost (B-C) ratio	-	0.95	Debt service coverage	-	1.17

Figure 9.3 - Project Costs and Savings

Figure 9.4 - Screen Shot of Project Cashflow Diagram Showing Payback Period and Time To Positive

Feasibility Review Summary:

Although providing 21% of the buildings energy from renewable sources is a noble undertaking, a 19 year payback period may not be enticing enough to warrant the initial $\$ 530,000$ for the system. However, being that the building is a part of a campus grid and that most university buildings have a very long lifespan (significantly higher than most traditional commercial buildings), and depending on the college's stance on sustainability, the initial cost may not be as much of a burden as for some other owners. Not factored into this calculation is any increase in admission that may occur from being able to advertise their "green" initiative on campus. Without knowing the personal intentions of the board of trustees of Williams College, my professional recommendation would be that it is not economically profitable to install this system of PV's on the parking deck of the Center for Theatre \& Dance. Other systems may have a cost/efficiency ratio that would create a more beneficial investment; however, a larger scale investigation into the comparison of multiple PV arrays would be necessary.

High-efficiency photovoltaic module using silicon nitride multicrystalline silicon cells.

Performance	
Rated power ($\mathrm{P}_{\text {max }}$) 175 W	
Power tolerance $\pm 5 \%$	
Nominal voltage 24 V	
Limited Warranty, 25 years	
Configuration	
BP 175B $\quad \begin{aligned} & \text { Bronze frame with output cables and } \\ & \text { polarized Multicontact }(\mathrm{MC}) \text { connectors }\end{aligned}$	
Electrical Characteristics ${ }^{2}$	BP175B
Maximum power ($\left.\mathrm{P}_{\max }\right)^{3}$	175 W
Voltage at Pmax ($\mathrm{Vmp}_{\mathrm{mp}}$)	35.8 V
Current at Pmax ($\mathrm{Imp}_{\text {mp }}$)	4.9A
Warranted minimum $\mathrm{P}_{\text {max }}$	166.3 W
Short-circuit current (l_{sc})	5.4A
Open-circuit voltage (V_{∞})	44.2 V
Temperature coefficient of $\mathrm{Iso}_{\text {so }}$	$(0.065 \pm 0.015) \% /{ }^{\circ} \mathrm{C}$
Temperature coefficient of V_{∞}	$-(160 \pm 20) \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Temperature coefficient of power	$-(0.5 \pm 0.05) \% /{ }^{\circ} \mathrm{C}$
NOCT (Air $20^{\circ} \mathrm{C}$; Sun $0.8 \mathrm{~kW} / \mathrm{m}^{2}$; wind $1 \mathrm{~m} / \mathrm{s}$)	$47 \pm 2^{\circ} \mathrm{C}$
Maximum series fuse rating	15A
Maximum system voltage	600 V (U.S. NEC \& IEC 61215 rating)

Mechanical Characteristics

Dimensions	Length: 1593 mm (62.8") Width: 790 mm (31.1") Depth: 50 mm (1.97")
Weight	15.0 kg (33.1 pounds)
Solar Cells	72 cells ($125 \mathrm{~mm} \times 125 \mathrm{~mm}$) in a 6×12 matrix connected in series
Output Cables	RHW AWG\# $12\left(4 \mathrm{~mm}^{2}\right)$ cable with polarized weatherproof DC rated Multicontact connectors; asymmetrical lengths $-1250 \mathrm{~mm}(-)$ and $800 \mathrm{~mm}(+)$
Diodes	IntegraBus ${ }^{\text {m' }}$ technology includes Schottky by-pass diodes integrated into the printed circuit board bus
Construction	Front: High-transmission anti-reflective 3 mm (1/8th inch) tempered glass; Back: Gray Charcoal Tedlar; Encapsulant: EVA
Frame	Anodized aluminum alloy type 6063T6 Universal frame; Color: Bronze

1. Warranty: Power output for 25 years. Freedom from defects in materials and workmanship for 5 years. See our website or your local representative for full terms of these warranties.
2. These data represent the performance of typical BP 175 B products, and are based on measurements made in accordance with ASTM E1036 corrected to SRC (STC.)
3. During the stabilization process that occurs during the first few months of deployment, module power may decrease by up to 1% from typical $P_{\text {max. }}$

Williams College '62 Center For Theater \& Dance Williamstown, MA

Included with each module: self-tapping grounding screws, instruction sheet, and warranty document.
Note: This publication summarizes product warranty and specifications, which are subject to change without notice.
Additional information may be found on our web site: www.bpsolar.us
©BP Solar 2006
6802.0006-v4 04/06
*Tinted with soy-based inks on recycled paper stock

Energy Efficient Transformer Analysis

Traditional building transformers tend to be over-designed to handle harmonic loads. There are, however, companies producing transformers that are designed for harmonic distribution and have been engineered to have a very high efficiency. The following analysis will review the costs and payback ratio of switching all transformers in the Center for Theatre \& Dance to Powersmiths’ High Efficiency, T1000 series transformers, rated for NEMA TP-1 standards in energy efficiency.

Cost information for individual transformers is provided in the following documentation on the next two pages as a part of Powersmiths' Energy Savings and Payback Calculator. Prices were referenced from a Powersmiths representative and from the 2003 Cutler-Hammer Products and Services Catalog and are listed in U.S. dollars. For documentation of transformer sizing and location, see the single-line diagram provided on the last page of the electrical depth section.

Loading percentages were estimated to approximate an average loading characteristic for the building, year-round, and based on the overall building energy consumption for the 2006 fiscal year, at $1,219,964 \mathrm{kwh}$.

Using Powersmiths’ Energy Savings and Payback Calculator, the installation of Powersmiths transformers would result in $\sim \$ 9,500$ savings per year, but due to the significant cost difference between Powersmiths and Cutler-Hammer transformers, the payback on the initial cost would be 14 years.

Since this is a campus building, which will most likely have a lifespan of $40+$ years, installing the energy efficient transformers could prove beneficial, so long as the College has the initial funds with which to invest. More interestingly for a liberal arts college in a rural Massachusetts setting, emissions reductions from the installation of Powersmiths' transformers would be equivalent to planting 13 acres of forest, planting back almost one and a half times the area of the building's site, at 8.21 acres.

Powersmiths
Toll Free : 1-800-747-9627 or (905) 791-1493 Project Description Date Williams Colleye, '62 Center for Theatre \& Dance 6-Apr-07

Available Full Load kw

Average kVA (calc) equipment operating hrsid day equipment operating days/yr Load during normal operating hours Load outside operating hours

Transformers on Project		Price (PurSm / CH) $\$ 6000 / 1350$
QTY	KVA	
5	15	
3	30	\$7000/1725
2	45	\$8000/2100
7	75	\$12000 / 2970
	112.5	\$16000/4300
	150	\$21000 / 5400
	225	\$28000 / 7900
1	300	\$35000 / 10000
	500	
	750	
	1000	
	1500	
	2000	
	7.5	
1080		
60		
12		
300	Calc Load kM	Calc Annual W W/
25\%	270	972,000
5\%	54	278,640
	Annual Load KWhr	1,250,640

Annual Cost to Operate Load Only k'Wh rate demand rate (\$iKN/mo) ex. $\$ 10.00$

\$	0.084	Annual Consumption: $\$$	105,054
	\$5.50	Annual Demand: \$	17,820
		Total Cost to run load \$	122,874

Annual Cost of Status Quo Transfonmer Losses \& Associated Air Conolitioning (A/C) burden

Nameplate Linear efficiency (normal op hrs)		97.2\%	\%oekctionis sor currert THD	80.0\%
Calculated operating efficiency		93.4\%		
Transformer kW Losses (Normal Operation)		19.1		
Status quo Efficiency (Outside op. hrs)		91.0\%		
Transformer k'/ Losses (Outside op. hrs)				
Annual addititional KNW from transformers		96,332		
Annual Cost of Transformer Losses	\$	9,353		
A/C System P erformance (kNiton)		1.27		
Additional Tons of Cooling (on peak)		5.43	ns	
Annual addititional kN / h from ACC		34,756	M	
Annual Cost of Associated A/C	\$	3,374		
Summary vith Status Quo Transformer				
Annual Cost of feeding Building Load	\$	122,874		
Annual Cost of Transformer Losses	\$	9,353		
Annual Cost of Associated AVC	\$	3,374		
Electrical Bill (Status Quo Transformer)	\$	135,601		

IMPORTANT: 时 Ising the ESP Calot tator ${ }^{\text {m4 }}$, yot are agree ing the TER MS OF USE section on page 3
Powermitis lieriationalCorp. is a licensed iser. CoItents abject toclage withontrotice

Toll Free : 1-800-747-9627 or (905) 791-1493			The
			Energy
Using Powersmiths instead of status quo transformers			
Powersmiths Efficiency (Normal Operation)		98.2\%	
Powersmiths kW Losses (Normal Operation)			
Powersmiths Efficiency (Outside op. hrs)		97.6\%	
Transformer kW Losses (Outside op. hrs)			kW
Annual addititional kWh from transformers		24,669	kWh
Annual Cost of Powersmiths Losses	\$	2,399	
Additional Tons of Cooling (on peak)		1.41	tons
Annual addititional kWh from A/C		8,900	kWh
Annual Cost of Associated A/C	\$	865	

Comparing Status Quo \& Powersmiths
Annual Cost of feeding Building Load Annual Cost of Transformer Losses Annual Cost of Associated A/C
Annual estimated Electrical Bill

Status Quo		Powersmiths		
\$	122,874	\$	122,874	
\$	9,353	\$	2,399	
\$	3,374	\$	865	Reduction
\$	135,601	\$	126,138	7\%
	$\begin{array}{r} 14.2 \\ 97,520 \\ 4.02 \\ \hline \end{array}$	kW kWh tons		

Cost Analysis (calc)
Energy Cost Escalation (above inflation)
Annual Power Quality Benefit

Status Quo Transformers Powersmiths Transformers Savings with Powersmiths

Peak kW reduction (normal op hours)	14.2 kW
Annual kWh reduction	$97,520 \mathrm{kWh}$
Reduction in Air Conditioning Load (on peak)	4.02 tons

Cost
Powersmiths Transformers
Status Quo Transformers

Annual Operating Cost $\$ 12,727$	Life Cycle Operating Cost \& Savings	
	20 years	$\mathbf{3 2}$ years
$\$ 3,264$	$\$ 459,735$	$\$ 1,048,755$
$\$ 9,463$	$\$ 117,913$	$\$ 268,984$

Payback on total cost Cost of Energy Savings Cost - Benefit Ratio	14.70	years	current kWh rate:
	0.045	/kWh \$0.084	
	1.9	times less to save a k	to buy a kWh
Leasing Option Total Annual Leasing Payments Net Annual Cost with savings	60 Month Term	48 Month Term	36 Month Term
	\$11,862	\$14,469	\$18,409
	\$2,399	\$5,006	\$8,947

Summary of Environmental Benefits

Protective Device Coordination Study

I have selected a single run from the lighting distribution panel for space 3, the dance rehearsal studio, back to the main switchgear, to verify this series of protective devices have been adequately coordinated. A simplified diagrammatic representation of this coordination path is shown below. The following pages list the individual trip curves that were assumed for the particular circuit breakers in the system and a coordination graph, showing that all devices are coordinated for acceptable protection. It should be noted that in order for this compliance to occur, the 1200A circuit breaker in the main switchgear would need to have a short delay pickup rating of at least 4 times the rating of the circuit breaker (4800A). Short circuit capacity information was unavailable as this is a campus facility and is tied into their main distribution loop.

Figure 11.1 - Diagram of Coordination Study Path

Williams College '62 Center For Theater \& Dance Williamstown, MA

Application Data
29-167F
Page 4

AB DE-ION Circuit Breakers

Types EHD, FD and HFD 20 Amperes

Figure 11.2-20A C/B Trip Curve from Lighting Distribution Panelboard LH3S

> Williams College '62 Center For Theater \& Dance Williamstown, MA

AB DE-ION Circuit Breakers

Types ED, EDH and EDC 225 Amperes

Curve No. SC-5805-94A
October 1997
E.T•N

Figure 11.3-225A C/B Trip Curve from Main Distribution Board DHBB

AB DE-ION Circuit Breakers
Types ND, CND, HND, CHND, NDC, CNDC Equipped With Type NES Digitrip RMS 310 Trip Units With I^{2} t Ramp Short Time Delay (Phase Protection)

Figure 11.4-1200A C/B Trip Curve from MSB1 Switchgear

Williams College '62 Center For Theater \& Dance Williamstown, MA

AB DE-ION Circuit Breakers

Figure 11.5 - Trip Curve Coordination Study Graph

LEED Breadth (Green Roof Feasibility Review)

$17^{\text {th }}$ story penthouse with a view? How about a $17^{\text {th }}$ story penthouse with a garden, front porch, and scenic walkway to say hi to your neighbors. Luxury living at its finest meets sustainable design in a harmonic union.

The world of the future? Maybe, but for now, hopefully we can be satisfied by helping to save the environment and saving a little money on energy consumption along with it.

Introduction

Global warming, an increase in air pollutants, and the loss of potable water in natural aquifers are becoming significant issues in today's environment. These issues have been spawned by multiple factors in today's economic practices, but are spearheaded by the exponential growth of commercial and residential buildings throughout the world. Current building standards accept black membranes, tar, and rock as the proper solution to roofing of commercial buildings. These black surfaces radiate absorbed heat back into the atmosphere, raising the mean ambient temperature of the surrounding air, allow heat to transfer through the roof surfaces into the building, increasing the load necessary from the mechanical system, and collect rainwater into stormwater drains, which would otherwise be absorbed into the ground.

By adding a green roof to the Williams College Center for Theatre \& Dance, many of these issues can be averted, saving the college money over the building's life cycle and making them feel a little better about saving the environment. Conditions of the feasibility of the implementation of a green roof are dependant on multiple factors, including the type of green roof used, available roof surface area, and climate. It has been shown in previous case studies that green roofs are feasible on buildings of this nature. This review will outline a comparison between the different types of available green roofs, including benefits and costs of each, a description of building parameters, as they pertain to the needs of these systems, and a cost analysis to determine if the addition of a green roof system is financially beneficial.

What is a Green Roof?

A green roof is a living plant-surface layer applied on top of a traditional roof structure that protects the roof from water damage, reduces solar heat gain into the building, absorbs stormwater, and increases oxygen production rates. There are two unique classifications of green roofs: Extensive and Intensive.

Extensive: Extensive green roofs are thin layers of naturally-occurring low-maintenance plants and weeds that require minimal water and are seasonally regenerative. They are generally not meant to be occupied spaces and are generally not meant for beautification of the building. They do, however, have significant benefits for applications on existing buildings. First, extensive green roofs are designed to be very light, usually between 2 and 6 inches of growing medium, reducing the additional load added to the roof's structural system. This, in turn, helps to reduce to overall cost of the system. Secondly, extensive green roofs don't require regular reseeding or maintenance. If a roof area is being considered for a green roof and is not readily accessible to maintenance crews, an extensive green roof is the way to go.

Figure 12.1 - Extensive Green Roof

Intensive: Intensive green roofs are very thick, landscaped areas that are usually designed to be occupied and used as a roof "garden" or terrace. The increase in growing medium is required for trees, shrubs, and flowers to grow naturally, but it increases the weight and average cost of the installation of this type of system. Growing medium depths are generally between 8 and 24 inches, depending on the types of plants that are chosen. In addition to a more attractive space, intensive green roofs require significant more maintenance than extensive green roofs, often times needing a grounds crew to maintain it, to mow the lawn, trim bushes, pull weeds. If a large enough intensive green roof is installed, similar to the green roof in figure 2, an irrigation system may need to be installed as well, further increasing the overall weight of the system. In most instances though, these types of green roofs will significantly increase the property value of the building and, depending on the application, could be paramount to the increase in public attention.

Figure 12.2 - Intensive Green Roof

Regardless of which type of green roof is chosen, some maintenance will be required during the first few months to initially establish the growing media. All green roofs, outside of the type and thickness of the growing media, have a similar membrane system to protect and insulate the roof upon which it is placed. A typical cross section of a green roof is shown below in figure 3.

Figure 12.3 - Typical Layers of A Green Roof

The major differences between green roof constructions occur in the growing medium and vegetation layers. These also happen to the layers that provide the largest differences in building performance outcomes. The differences between these systems are provided in the following table:

	Extensive	Intensive	Black Tar
Types of Vegetation	Low growing, heat \& drought resistant	Grass, Trees, Flowers	0
Growing Media Depth (inches)	$2-6$	$8-24$	0
Additional Weight (lb/sq.ft.)	$18-31$	$45+$	0
Stormwater Retention Capacity	$2.10-6.12$	$7.91+$	0
Maintenance	\sim none	Daily	\sim none
Average Cost (\$/sq.ft.)	$10-12$	$15-35$	$4-6$

Table 12.1-Graphical comparison of roofing types
Ultimately, the decision of the type of green roof comes down to the available budget for the project and the desired use of the space. Careful consideration should be put into all factors before making a decision on a type of green roof.

Since this type of construction is still relatively new, most of the statistical figures come from cases studies throughout the U.S. and Europe. Case studies have shown that buildings can save approximately 18 cents/kwh on energy consumption due to heating and cooling loads. The increase in thermal mass at the roof of the structure provides, on average, a 92% reduction in solar heat gain and a 26% reduction on heating losses. The graph below shows the results of tests performed on roof heat transfer by the National Research Council of Canada.

Table 12.2 - Measurement of heat flow through roof shows exceptional performance in summer months

Williams College Facility

The Williams College '62 Center for Theatre and Dance is a 126,000 square feet performing arts center that has two large professional theatres, a state of the art black box theatre, a dance rehearsal studio, and many other classrooms and support spaces. Four spaces on the building's roof are potential candidates for a green roof application. A roof plan is provided below in figure 4, showing these potential locations and their surface areas.

Dance Rehearsal Studio

Figure 12.4-Roof Plan Showing Potential Locations for Green Roof Application

These four areas make up the major sections of the roof of the building, each being located above major spaces in the building that require heating and cooling throughout the year. The main corridors and east lobby are, by far, the most important spaces for the addition of a green roof. These spaces are constantly occupied and the hardest to keep at a consistent temperature due to their proximity to so many exterior walls, including the roof. Since none of these locations are easily accessible to the occupants of the building, the best choice for this type of building is the extensive green roof. The following pages will detail the feasibility topics for the implementation of an extensive green roof onto all four of the above spaces. Necessary topics for feasibility include energy reduction due to increased thermal mass, reduction in stormwater runoff, cost \& payback period for the system, the ability for the structural system to support the added weight, and a discussion of urban heat island effect.

Energy Savings:

Due to the increased thickness of the roof surface, which adds to the overall insulation value, the ability for growing medias to absorb heat, and the fact that grass reflects more infra-red light than a black tar membrane, the addition of a green roof to a building significantly reduces the necessary loads from the HVAC system. Through multiple case studies, it has been found that a 92% reduction in cooling loads and a 26% reduction in heating loads can be achieved with the installation of an extensive green roof. The Williams College Center for Theatre \& Dance uses, on average, $1,219,964 \mathrm{kwh} /$ year. Approximately nine of the twelve months of the year are in heating, with the other three being in cooling. Generating a comprehensive average, a 42.5% reduction in HVAC loads can be achieved. Since approximately 60% of the buildings energy consumption is attributed to HVAC loads, the addition of a green roof could amount to a savings of $\$ 26,067 /$ year, given that the price of electricity is 8.4 cents $/ \mathrm{kwh}$. It has been shown through multiple case studies that adding a green roof not only increases the efficiency of the roof insulation, but it also reduces temperature fluctuations. Figure 5 shows an example of the common results of a study on outer and inner membrane temperatures between green roofs and traditional black tar membrane roofs. This reduction in peak temperatures will equate in greater savings in energy costs, as this will help to reduce peak load consumption for the building, billed separately as the demand rate.

Figure 12.5-Temperature fluctuations between a green roof and a conventional roof

Stormwater Runoff Reduction:

Relocating stormwater because of impervious surfaces is bad all-around. When buildings are built over normally grassy areas, all the stormwater that would have previously been absorbed, filtered, and carried to natural aquifers and streams, ends up getting channeled into stormwater piping and sent to water filtration plants. By reducing the size and quantity of this stormwater piping, a significant amount of money can be saved by both the building owner and the water company. Green roofs absorb rainwater, much like the ground does, filters it and then either evaporates or is consumed in the photosynthesis process of the plant material. While not all rainwater can be collected, it has been found that with only four inches of growing media, a green roof can retain an average of 71% of it, with the other 29% still needing to be drained elsewhere. A study by Roofscapes, Inc, a green roofing supplier and contractor in Philadelphia, PA, shows that four inches of growing media can retain a 3.50 " threshold storm, while seven inches of growing media can retain a 6.12" threshold storm. Table 3 below shows average weather data for Williamstown, Massachusetts. Average rainfall during each of the months never exceeds 4.6 inches, well within the limits of 100% retention for six inches of growth media. Therefore, the addition of a green roof could reduce the sizes of a stormwater management system by $80-100 \%$. It's important to note that the runoff from a green roof has been proven clean enough to use for irrigation or the flushing of toilets, allowing the runoff to be collected and used in the building.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Avg. High	28°	31°	40°	54°	66°	74°	78°	77°	68°	58°	45°	34°
Avg. Low	7°	8°	18°	31°	41°	48°	54°	52°	45°	35°	27°	15°
Mean	18°	20°	30°	42°	54°	62°	67°	65°	58°	47°	37°	24°
Avg. Precip.	3.5 in	3.4 in	3.9 in	4.3 in	4.6 in	4.5 in	4.1 in	4.3 in	3.8 in	3.8 in	4.6 in	4.3 in

Table 12.3 - Weather Data for Williamstown, MA

Cost/Benefit Analysis:

While environmental considerations are a very philanthropic concept, the ability to pay for and maintain those considerations is the strongest of these considerations. This study proposes the addition of 17,680 square feet of green roof to be added to the Center for Theatre \& Dance. Accounting for the price of extensive green roofs, the whole system would cost an average of $\$ 194,500$. If the cost analysis is considered over the average lifetime of a green roof, 40 years, which probably an acceptable estimate for this being an academic building, we must consider the cost implications of standard roof replacement for black tar membrane roofs, which generally only have a lifespan of 10-15 years. This means that a traditional roof would need to be replaced three times during the lifespan of a single green roof.

	Green Roof	Traditional Roof
Initial Cost	$\$ 194,500$	$\$ 88,400$
Energy Savings	$\$ 26,067$	0
Replacement	0	$\$ 265,200$
System Lifecycle Cost	$(-\$ 848,200)$	$\$ 353,600$
Simple Payback	7 years	--------

Table 12.4 - Payback Analysis derived over a 40 year period (neglecting inflation)

Structural Capacity:

One of the important factors as to whether a green roof can be added to the building is whether the current roof structural system is capable of withstanding the added weight. The following loading parameters were referenced from the 2003 IBC (International Building Code), $13^{\text {th }}$ Edition of the AISC (American Institute of Steel Construction) Steel Construction Manual, and trade-accepted assumptions for standard buildings material parameters.

Weight of Concrete	$150 \mathrm{lb} / \mathrm{ft}^{3}$
Snow Load (Williamstown, MA)	60 psf
Suspended Mechanical (assumed)	15 psf
Suspended Theatrical (assumed)	10 psf
$\mathrm{E}_{\text {steel }}$	29000 ksi
Governing Loading Characteristic	$1.2 \mathrm{~L}+1.6$ Snow

Table 12.5 - Loading parameters
An analysis was performed on a girder in each of the four roof sections listed above. The performance of each girder can be reviewed, in depth, in the structural breadth section that follows this one. In summary, all four sections are capable of withstanding the extra load, in worst case scenario, of 32 psf that a fully saturated green roof would add. This verifies that no additional cost for structural reinforcement would be necessary to add a green roof to the Center for Theatre \& Dance in all four locations.

Urban Heat Island Effect:

Current research in urban environment and planning has found that as more and more black surfaces, including roads and building roofs, are built, covering the surface of the earth, heat plenums are built up in the lower levels of the atmosphere, trapping solar radiation and increasing the mean ambient temperature of the earth occupied atmosphere. As the mean ambient temperature increases, buildings need to consume more energy in order to keep the spaces comfortably conditioned. Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory have estimated that "using alternative surfaces to reduce the temperature of ambient air in cities by just 5.4 degrees Fahrenheit would save up to $\$ 6$ billion per year in energy costs, nationwide." While this effect is generally occurring most rapidly in large cities, where many acres of land are covered by black, absorptive surfaces, building construction rates continue to grow at a rapid pace and it's better to start now than when it's too late. Global warming and air quality are huge issues in the environment today. Plant mass contributes a significant amount of oxygen to the air, filtering harmful contaminants. By removing our buildings from the environment's eye, we can slow the processes of global warming and, in a matter of speaking, turn back the hands of time on building growth (considering the percentage of the earth's surface area being covered by impervious materials).

Conclusions \& Recommendations

With a seven year payback on investment and a total lifecycle savings of over one million dollars, the addition of a green roof seems economically beneficial for Williams College to invest in. Green roofs are helping the environment in many different ways, from maintaining natural aquifers to reducing the urban heat island effect. In most instances, it's hard to find a new standard that is both economically feasible and environmentally beneficial, but a green roof seems it may be one.

The following section will outline calculations performed to determine if the structural system of the roof, in the following four spaces, is sufficient to carry an additional green roof load or if they need to be redesigned for load compliance. Please reference the following plan with provided structural plans.

Figure 13.1-Roof Plan Showing Potential Locations for Green Roof Application

Location 1:

Figure 13.2 - Structural Plan for Location 1 (550 seat main theatre) n.t.s.
To check for compliance in this area, I chose to analyze the W30x148 in the center of the space. Since the roof is made of composite steel joists, I've used the LRFD method to determine the maximum moment on the beam due to a simplified distributed load. Snow loads in Williamstown were approximated using the 2003 IBC and found to be approximately 60 psf. Other loads, such as mechanical, electrical and decorative ceiling panels, were approximated as additional dead load. The loading factors that dominated were $1.2 \mathrm{D}+1.6 \mathrm{~S}$. Calculating the distributed load from a tributary width of 10 ', the steel joist is carrying $2.4 \mathrm{kips} / \mathrm{ff}$. Calculation of the maximum moment assumed a beam supported on both ends, spanning 62 feet, and resulted in 1,153kip-ft. Comparing this value to the maximum available strength for a W30x116, a smaller member than I have, my calculated moment is well within the 1890 kip-ft available. The addition of 35 plf from the green roof increases the moment to 1320kip-ft, which is still less than 1890kip-ft.

Therefore, this beam would be capable of supporting the additional load with no need for redesign.

Location 2:

Figure 13.3 - Structural Plan for Location 2 (center stage black box theatre) n.t.s.
Compliance in this space was checked against a W36x135, spanning 54'. Loading characteristics are very similar in this situation. Because a wire mesh grid is suspended from the roof joists and will have multiple people working on it with theatrical lighting fixtures, an additional 40psf live load was also factored in. With a tributary width of 11^{\prime}, the maximum moment on the beam is 1026kip-ft. The maximum moment allowable on a W36x135 is 2550, assuming worst case scenario, and therefore complies.

Location 3:

Figure 13.4 - Structural Plan for Location 3 (dance rehearsal studio) n.t.s.

Figure 13.5 - Open Web Steel Joist Elevation n.t.s.

Figure 13.6-Open Web Steel Joist Details n.t.s.

Compliance in this space was checked on one of the open web steel joists, $\mathrm{T}-1$. To check the ability for these members to carry the load without performing a full point analysis and design of a truss, which I have background for, I have approximate this truss with the closest standard truss from the Vulcraft catalog and checked the loading against their maximum loading values. The span of the trusses is 52^{\prime}, with a tributary width of 7.5'. The concrete lab in this section is a 3 " slab with metal decking. The largest 4' joist from the Vulcraft catalog, the 48LH17, spanning 52', is capable of withstanding 1107lb/lf. Considering loading conditions for dead and snow loads, the distributed load on the truss is approximately 1129lb/lf. This joist would fail under the existing loading conditions, but it's understood that the custom-made open web steel joist detailed above is designed with WT beams and the Vulcraft joists are designed with smaller steel angles. I have no basis for the difference in structural capacity that switching these to WT's will add, but I've compared the moment of inertia of the WT8x28.5 of the custom made joist with the L6x6x1/2 and found the W8x28.5 to be 2.45 times larger. Applying a conservative 65% of this increased moment of inertia, at 1.59 times the strength of the Vulcraft joist, results in a maximum available moment capacity of $1766 \mathrm{lb} / \mathrm{lf}$. With the additional load of the green roof, this increases the linear load on the joist to $13911 \mathrm{~b} / \mathrm{lf}$, which is within the range of the original joists capacity. While a more detailed analysis of the joist would be necessary to prove in it's entirety, I believe that the additional 35psf for the extensive green roof would be able to be supported by the existing system.

Williams College '62 Center For Theater \& Dance Williamstown, MA

Location 4:

Figure 13.7-Structural Plan for Location 4 (hallways)
Compliance was checked against the W8x10 member with a 7 ' tributary width and a length of 14 '. The LRFD Steel Manual specifies the maximum allowable load on a W8x10 at 7' as 37.6kips. The total load on the member in this system is 9.1kips. The additional load of the green roof would add 3.43 kips , bringing the total load on the entire system to 12.5 kips , still only a third of t he capacity of the member.

Conclusions

While not all proposed solutions had the most enticing payback period or desired outcome, one saving factor for this building is that it's a part of a college campus, where lifespans of buildings are often times $40+$ years. Many economic analysis' that would fail for a spec grade office building, lifespan of 4-6 years and often with immediate turnaround, prove to hold up to a building that will stay around for a long time and be owned and operated on site. Adding energy efficient transformers to this building is a big investment with a wait for a return on that investment, but when compared with planting 13 acres of forest every year to combat the CO_{2} produced by transformers that aren't as efficient, things begin to come into perspective.

I have always been a proponent of lighting for the emotional perspective. Light is a fundamental piece of our every day life; pure, vibrant, and every changing. If we were meant to live in a world with boring, even, functional illumination, the sky would be a grey, diffuse mask. As the one piece of building systems that can affect a person on deep levels of their emotions, I've always felt a need to honor that factor that nature does so well. I felt the introduction of color and the varied levels of illumination that direct a person through the space was very successful and created a dynamic space that could get someone in the mood to watch a theatrical performance. It has long been my understanding that when a person enters a space, they shouldn't have to think. Thinking takes away from experiencing. Our duty as lighting designers is to reduce the need for thinking by justifying action, without doubt, so that experience can be as strong as possible. The major change to LED's is risky at this time, as the technology is still in infancy, but the future is promising and there are some manufacturers that are a cut above the rest.

The Williams College Center for Theatre \& Dance was designed very recently and completed construction in 2006, employing many of the strategies for efficiency that we use today. It was a utilitarianist design that sought to meet the requirements for functionality in most instances. In the theatre, the performer is experience, not the props. Possibly this philosophy has found its way into the heart of the building which consumes these performers.

My conclusions seek that with an initial investment, Williams College can save a considerable amount of energy and money, be it from an addition of a green roof, energy efficient transformers, or taking that leap of faith that says compact fluorescents really can look incandescent. Maybe the idea of putting photovoltaics to work for this building didn't look the best, but everything is relative in scale, and all depends on how much extra money is set aside that no one would miss for the next 25 years. Create for experience and beauty, engineer to make those real.

Appendix A (Luminaire Schedules)

HLB LUMINAIRE SCHEDULE					
Fixture Type	Lamps		Manufacturer \& Catalog No.		
	No.	Type			
HL-1	1	100A/1F	LGGHTOLER G7057CLW/G 410	120	RECESSED
HL-2	1	100W A19	LIGHTOUER C 4AWCLW/C4120	120	RECESSED
HL-3	1	Q50MR16/C/NFL25	TRANSUTE SOROMA MICROSPOTL 211-AL	120	SURFACE
HL-3A	1	Q50MR16/C/NFL25	TRANSLTE SOROMA MICROSPOTL 211-AL	120	SURFACE
HL-4	-	5 WATTXENON	STARFIRE LG HTING XF-3-5-72"-24v WITH XF-ASW REFLEC TOR	120	SURFACE
HL-4A	-	5 WATTXENON	STARFIRE LG HTING XF-3-5-84"-24v WITH XF-ASW REFLEC TOR	120	SURFACE
HL-4B	-	5 WATTXENON	STARFIRE LG HTING XF-3-5-96"-24v WITH XF-ASW REFLEC TOR	120	SURFACE
HL-4C	-	5 WATTXENON	STARFIRE LGHTING XF-3-5-120"-24v WITH XF-ASW REFLEC TOR	120	SURFACE
HL-4D	-	5 WATTXENON	STARFIRE UGHTING XF-3-5-144"-24v WITH XF-ASW REFLECTOR	120	SURFACE
HL-5	2	Q500PAR56MFL	KIRUN SR31245-38-99-WB-MOD	120	WAL
HL-6	1	PLT-26W/830/4P/ALTO	LGGHTOLER 8021 CCLW/6132BU	277	RECESSED
HL-7			Not Used		
HL-8	1	PLT-42W/830/4P/ALTO	LGHTOUER 8022 CCLW/7142BU	277	REC ESSED
HL-9	1	50PAR20/H/SP10	STONCO 30KL	120	SURFACE
HL-10	1	Q350T3/CL/HIR	STONCO CPH515L	120	SURFACE
HL-11	3	F32T8/TL835	UNEAR LGHTING CD27P-1-3-ET8-277-PRD-C-24-BW-ED-12	277	PENDANT
HL-11A	3	F3278/TL835	LINEAR LGHTING CD27P-1-3-ET8-277-PRD-C-24-BW-ED-8	277	PENDANT
HL-12	1	PLT-42W/830/4P/ALTO	DELRAY LGHTING 2072SO-32-277-E	277	PENDANT
HL-13	-		Not Used		
HL-13A	-		Not Used		
HL-13B	1	F54T5/830/HO	LGHTOUER 8269WH	277	SUSPENDED
HL-14	3	90WPAR38/HAL/WFL/60/WL	RSA COMBO - MODIFIED FOR WALL MOUNT	120	WALL
HL-15	1	90PAR38/H/FL25	LIGHTOUER 8747WH/6196WH C-CLAMP MONOPOINT	120	SURFACE
HL-16	1	Q350T3/CL/HIR	INSIGHTLIGHTNG TM 501-RCB-1-1-CC-SS-MOD	120	WALL
HL-17	1	90PAR38/H/FL25	LIGHTOUER 7026AD/7249	120	WAL
HL-18	2	Q500PAR56MFL	KIRUN SR 31245-38-99--	120	SURFACE
HL-19	-		Not Used		
HL-20	1	PLT-42W/830/4P/ALTO	UGHTOLER 8022WW CCLW/7142BU	277	RECESSED
HL-21	1	PLT-26W/830/4P/ALTO	UGHTOUER 8046 CCLW/61322BU	277	RECESSED
HL-22	1	90WPAR38/HAL/WFL/60/WL	LGGHTOUER C6P38A/C6D120	120	RECESSED
HL-23	1	CDM35/T6/U/830/G12	INSIG HTUGHTING TM517-WCB-1-1-N-SS	120	WALL
HL-24	1	100A/1F	SPERO VX215-41-G	120	SURFACE
HL-25	1	22 WATTT5 R	WILA 202-70-SA-OR/10-120	120	SURFACE

THEATRE LUMINAIRE SCHEDULE					
Fixture Type		Lamps	Manufacturer \& Catalog No.	Voltage	Mounting
	No.	Type			
BL	1	40W19/F	BEGA 2226P-MOD-INC		SURFACE
FL1	1	F3278/[835	COLUMBIA CS4-132-EB8-120-CSWG 4	120	CEIUNG SURFACE
FL2	1	F3278/[835	COLUM BIA CS4-132-EB8-120-CSWG 4	120	SUSPENDED
FL3	2	F3278/7835	COLUMBIA WC 4-232-EB8-120	120	SURFACE
WL	1	1000T 3Q/P/CL	HUBBELL QL-1505		CATWALK RAIL

Williams College '62 Center For Theater \& Dance
Williamstown, MA

ELECTRICAL ENGINEER LUMINAIRE SCHEDULE					
Fixture Type	Lamps		Manufacturer \& Catalog No.	Voltage	Mounting
	No.	Type			
C1	1	500 T3Q/P/CL	STONCO CPH515		SURFACE
C2	1	50MR16/VWFL/60(FNV)	BK LG HTING NS-9-BZP-9-11 TRANSFORMER CUS-1826-02-BZP TREE STRAP TS-TMC-BZP-6"		SURFACE
EC 1	-	LED	DUAL LTE LESCS-G-(X/R/L/D/C)A		CEIUNG SURFACE
EC2	-	LED	DUAL LTE LESCS-G-(X/R/L/D/C)A		CEIUNG SURFACE
EC3	-	LED	DUAL UTE LESCS-G-(X/R/L/D/C)A		CEIUNG SURFACE
EC4	-	LED	DUAL UTE SEG WIN		CEIUNG SURFACE
EW1	-	LED	DUAL LTE LESCS-G-(X/R/L/D/C)A		WALL SURFACE
EW2	-	LED	DUAL LTE LESCS-G-(X/R/L/D/C)A		WALL SURFACE
EW3	-	LED	DUAL UTE SEG WIN		WALL SURFACE
EW4	2	FURNISHED WITH LAMP	DUAL LIE EZ-2		WAL
FC1	4	F32T8/TL835	COLUM BIA CSR8-232-EB8LH-277-CSWG4	277	CEILING SURFACE
FC 1A	2	F32T8/72835	COLUMBIA CSR4-232-EB8LH-277-CSWG4	277	CEIUNG SURFACE
FC 1B	1	F17T8/TL835	COLUM BIA CH2-117-EB8LH-277	277	CEILING SURFACE
FC2	4	F32T8/TL835	COLUM BIA CS8-232-EB8LH-277-CSWG4	277	CEILING SURFACE
FC3	2	F3278/TL835	COLUM BIA WC 4-232-EB8-277	277	CEIUNG SURFACE
FC4	2	F3278/TL835	COLUM BIA CS4-232-EB8LH-277-CSWG 4	277	CEILING SURFACE
FC5	2	F3278/TL835	COLUM BIA CS4-232-EB8-277-CSWG4	277	CEIUNG SURFACE
FC6	4	F32T8/TL835	COLUMBIA CS8-232-EB8LH-277	277	CEILING SURFACE
FC7	1	PLC-26W/38	CANLET BFC F26H1-G HC-277	277	CEILING
FC8	1	FC 12T9/CWHL	UTHO NIA 10991-277	277	CEIUNG SURFACE
FC9	2	F3278/TL835	COLUM BIA STR24-232G-MPO-EB8LH-277	277	CEILING SURFACE
FR1	2	F3278/TL835	COLUM BIA 4PS24-232G-FSA12.125-EB8LH-277	277	RECESSED
FR1A	2	FB32T8/7L835/6	COLUM BIA 4PS22-232U6G-FSA12.125-EB8LH-277	277	RECESSED
FR2	2	F32T8/TL835	COLUM BIA HC24-232G-LD29-S-EB8LH-277	277	RECESSED
FR2A	2	FB32T8/TL835/6	COLUMBIA HC 22-232U6G-D34-S-EB8LH-277	277	RECESSED
FR2B	3	FT40W/2G 11/RS/35	COLUM BIA HC 22-40TT-G-LD34-S-EB8LH-277	277	RECESSED
FR3	1	PLC-26W/35	PRESC OLTE CFI832-HEB-ST-F802H		RECESSED
FR4	2	F32T8/72835	COLUM BIA STR24-232G-MPO-EB8LH-277	277	RECESSED
FR5	3	F3278/TL835	COLUM BIA 4PS24-332G-FSA12.125-EB8LH-277	277	RECESSED
FR6	3	F3278/TL835	COLUM BIA HC 24-332G-LD39-S-EB8LH-277	277	REC ESSED
FR7	2	F32T8/72835	COLUM BIA HC24-232F-LD29-S-EB8LH-277	277	REC ESSED
FR8	1	PLC-26W/35	PRESCOUTE CFI832-HEB-STTIP-B6-277	277	RECESSED
FS1	4	F3278/TL835	COLUM BIA CSR8-232-EB8LH-277-CSWG4	277	SUSPENDED
FS1A	2	F32T8/TL835	COLUM BIA CSR4-232-EB8LH-277-CSWG4	277	SUSPENDED
FS2	2	F3278/TL835	COLUM BIA CS4-232-EB8-277-CSWG 4	277	SUSPENDED
FS3	4	F3278/72835	UNEAR UGHTING CD27P-B-2-EI8-277-PRD-24-BW-8'	277	SUSPENDED
FS3A	2	F32T8/TL835	UNEAR UGHTING CD27P-B-2-EI8-277-PRD-24-BW-4'	277	SUSPENDED
FS4	2	F3278/TL835	COLUMBIA WC 4-232-EB8-277	277	SUSPENDED
FW1	4	F3278/TL835	COLUMBIA F4-2DT8-WM-LD-EB8LH-277-8-SGL	277	WALL SURFACE
FW1A	2	F25T8/TL835	COLUM BIA F4-2DT8-WM-LD-EB8LH-277-MW-6-SGL	277	WAL SURFACE
FW1B	2	F32T8/TL835	COLUM BIA F4-2DT8-WM-LD-EB8LH-277-MW-4-SGL	277	WAL SURFACE
FW1C	1	F17T8/TL835	COLUMBIA F4-1DT8-WM-LD-EB8LH-277-MW-2-SG L	277	WAL SURFACE
FW2	4	F32T8/72835	COLUMBIA WAL 8-232-EB8LH-277	277	WALL SURFACE
FW2A	2	F32T8/7L835	COLUMBIA WAL 4-232-EB8LH-277	277	WAL SURFACE
FW3	1	PLC-26W/35	CANLET BFWF26H1D-G HC-277	277	WAL SURFACE
FW4	2	F32T8/TL835	COLUM BIA CS4-232-EB8-277-CSWG 4	277	WAL SURFACE
FW5	1	FC 12T9/CWHL	UTHONIA 10991-277	277	WAL SURFACE
FW6	1	PLC-26W/35	CANLET BFWF26H1D-G HC-120	120	WAL SURFACE
FW7	1	PLS-13W/35	BEGA 2294P-277	277	WAL
MC1	1	MH175/U/M	SPAULING PDI-M175PS-MT-Q2-SGB		CEILING SURFACE
MS1	1/1	$\begin{aligned} & \text { MS320/PS/BU-ONLY } \\ & \text { 250Q/CL/MC } \end{aligned}$	HUBBELL BL320 W8 HG16 WH-QST		SUSPENDED
MS2	1	CDM 150/TD/830	HUBBELL BL150 W8 HG 16 WH WG 16		SUSPENDED

ELECTRICAL ENGINEER LUMINAIRE SCHEDULE (cont.)					
Fixture Type		Lamps	Manufacturer \& Catalog No.	Voltage	Mounting
	No.	Type			
MS2A	1/1	CDM150/TD/830 250Q/CLMC	HUBBEL BLL50 W8 HG 16 WH WG 16-QST		SUSPENDED
P1	1	MH175/C/U/MED ED-17	SPRING CITY WШAM \& MARY EFED-H-3-CO SPRING CIT HARRISBURG/BALTMORE $10^{\circ}-111 / 2^{\prime \prime}$ POSTHT		POLE
R1	1	150PAR38/2FL	EDISON PRICEDL38/45/5AA		RECESSED
R2	1	150PAR38/2FL	EDISON PRICE DL38/6/COL		RECESSED
R3	1	20W MC	BEGA 2908-120V	120	RECESSED
R4	1	150PAR38FL	EDISON PRICEDL38/5 COL		RECESSED
51	1	75WPAR30	UGHTUER 8202/8235WH-6190WH-120	120	SUSPENDED
52	1	150PAR38FL	PRESCOUTE 1125-976		SUSPENDED
T1	-	75WPAR16	PRESCOUTE TV141 WH PRESCOLIE TSA-WH TRACK		TRACK
W1	1	60WG25	COLFUGHING VS-6"WG		WALISURFACE

NEW LIGHTING LUMINAIRE SCHEDULE					
Fixture Type	Lamps		Manufacturer \& Catalog No.	Voltage	Mounting
	No.	Type			
D-1	9	F28T5/830	LEDALTE CACHE 891-5-S03-L-N-12-9-2-E-W	277	SUSPENDED
D-1A	6	F28T5/830	LEDALTE CACHE 891-5-S03-L-N-08-9-2-E-W	277	SUSPENDED
D-2	48	1W WARM WHITE LED	EXTERIEUR VERT M L6-41-0-1-4-10R-1-4 / E-096-7	277	SURFACE
D-3	-	0.72W LED FESTO O NS	TVOU CL-2-R/B/B-12VDC / CLCHAN / CL-LC	277	SURFACE
D-4	-	LED	IOLG HTING LUXRAIL 0-06-SSS-1-WM-NR-45-R/B-LENG TH-2-I	277	SURFACE
D-5	-	LED	IOUG HTNG UNE0.75 0-03-1-3K-10-100-1-16-2-4-I	277	SURFACE
D-6	1	PLT-26W/830/4P/ALTO	EDISON PRICE TRPV-26/6-277-BFL	277	REC ESSED
D-7	1	PLT-26W/830/4P/ALTO	EDISO N PRICE TRPV-26/6-277-WHFL	277	REC ESSED
D-8	1	Q 71/H	FIBERSTARS STAR KIT / FS1L-SPW/NC-120	120	REC ESSED
D-9	1	Q 50M R16/C/FL40	TARG ETII FOHO PRO MR16 P US1T0686D1	120	SURFACE
D-10	1	PLT-18W/830/4P/ALTO	EDISO N PRICE TRPV-18/6-277-WHFL	277	REC ESSED
D-11	1	Q 50M R16/C/NFL25	UG HTO UER C 4M RD CLP / C 4AIC LVE1	120	REC ESSED
D-12	18	1.2W LED	THO RNE PROM ENADE BOL LED WHI/RG B 1150M M M PLANT	24/120	SURFACE
D-13	1	Q 50M R16/C/WFL60	BK UG HTING NS-9-BZP-9-11 TRANSFO RM ER CUS-1826-02-BZP TREE STRAP TS-TM C-BZP-6"	12/120	TREE
D-14	2	F32T8/TL835	866-1-T20-AE-12-7-2-E	277	SUSPENDED

Appendix B (Mechanical Equipment Schedules)

Mechanical Loads								
Designation	Type	Voltage	F.L.Amps	Phase	Power (HP)	Power (KVA)	PF	Power (KW)
ACLC-1	Air Chiller	480	46	3	44	38.24	0.90	34.42
AHU-1A	Air Handling Unit	480	96	3	75	79.81	0.90	71.83
AHU-1B	Air Handling Unit	480	96	3	75	79.81	0.90	71.83
AHU-1C	Air Handling Unit	480	40	3	30	33.26	0.90	29.93
AHU-1D	Air Handling Unit	480	40	3	30	33.26	0.90	29.93
AHU-2A	Air Handling Unit	480	34	3	25	28.27	0.90	25.44
AHU-2B	Air Handling Unit	480	14	3	10	11.64	0.90	10.48
AHU-3A	Air Handling Unit	480	14	3	10	11.64	0.90	10.48
AHU-3B	Air Handling Unit	480	7.6	3	5	6.32	0.90	5.69
AHU-4A	Air Handling Unit	480	27	3	20	22.45	0.90	20.20
AHU-4B	Air Handling Unit	480	11	3	7.5	9.15	0.90	8.23
AHU-5A	Air Handling Unit	480	21	3	15	17.46	0.90	15.71
AHU-5B	Air Handling Unit	480	11	3	7.5	9.15	0.90	8.23
AHU-6	Air Handling Unit	480	7.6	3	5	6.32	0.90	5.69
AHU-7	Air Handling Unit	480	11	3	7.5	9.15	0.90	8.23
AHU-8	Air Handling Unit	480	7.6	3	5	6.32	0.90	5.69
AHU-9A	Air Handling Unit	480	21	3	15	17.46	0.90	15.71
AHU-9B	Air Handling Unit	480	4.8	3	3	3.99	0.90	3.59
AHU-10	Air Handling Unit	480	7.6	3	5	6.32	0.90	5.69
AHU-11	Air Handling Unit	480	7.6	3	5	6.32	0.90	5.69
AHU-12A	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-12B	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-13	Air Handling Unit	277	2.2	1	0.167	0.61	0.85	0.52
AHU-14	Air Handling Unit	277	2.2	1	0.167	0.61	0.85	0.52
AHU-15A	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-15B	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-16	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-17A	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-17B	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-19	Air Handling Unit	277	2.2	1	0.167	0.61	0.85	0.52
AHU-21A	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
AHU-21B	Air Handling Unit	277	4.9	1	0.5	1.36	0.85	1.15
B-1	Boiler	480	3.4	3	2	2.83	0.90	2.54
CP-1	Condensate Pump	480	13.5	3	9.36	11.22	0.90	10.10
CUH-1	Unit Heater	277	4.9	1	0.5	1.36	0.85	1.15
CUH-2	Unit Heater	277	4.9	1	0.5	1.36	0.85	1.15
CUH-3	Unit Heater	120	5.8	1	0.25	0.70	0.85	0.59
CUH-4	Unit Heater	120	2.9	1	0.125	0.35	0.85	0.30
CUH-5	Unit Heater	120	2.9	1	0.125	0.35	0.85	0.30
CUH-6	Unit Heater	277	4.9	1	0.5	1.36	0.85	1.15
CUH-7	Unit Heater	120	2.9	1	0.125	0.35	0.85	0.30
CUH-8	Unit Heater	277	4.9	1	0.5	1.36	0.85	1.15
CUH-10	Unit Heater	120	4.4	1	0.167	0.53	0.85	0.45

Williams College '62 Center For Theater \& Dance
Williamstown, MA

Mechanical Loads								
Designation	Type	Voltage	F.L.Amps	Phase	Power (HP)	Power (KVA)	PF	Power (KW)
DC-1	Dust Collector	480	11	3	7.5	9.15	0.90	8.23
EH-1	Humidification	480	20	3	6.71	16.63	0.90	14.96
EH-2	Humidification	480	20	3	6.71	16.63	0.90	14.96
EUH-1	Electric Unit Heater	480	20	3	6.96	16.63	0.90	14.96
EUH-2	Electric Unit Heater	277	1.5	1	0.125	0.42	0.85	0.35
F-01	Fan	480	1	3	0.5	0.83	0.90	0.75
F-02	Fan	480	2.6	3	1.5	2.16	0.90	1.95
F-03	Fan	120	7.2	1	0.33	0.86	0.85	0.73
F-04	Fan	480	1.4	3	0.75	1.16	0.90	1.05
F-05	Fan	120	5.8	1	0.25	0.70	0.85	0.59
F-06	Fan	120	5.8	1	0.25	0.70	0.85	0.59
F-08	Fan	480	1.8	3	1	1.50	0.90	1.35
F-09	Fan	480	1.8	3	1	1.50	0.90	1.35
F-010	Fan	480	1.4	3	0.75	1.16	0.90	1.05
F-011	Fan	120	13.8	1	0.75	1.66	0.85	1.41
F-012	Fan	120	5.8	1	0.25	0.70	0.85	0.59
F-013	Fan	120	5.8	1	0.25	0.70	0.85	0.59
F-014	Fan	480	1.8	3	1	1.50	0.90	1.35
F-015	Fan	480	1.8	3	1	1.50	0.90	1.35
F-016	Fan	480	1.8	3	1	1.50	0.90	1.35
F-017	Fan	480	1.4	3	0.75	1.16	0.90	1.05
FPB-6	Fan Powered Box	277	1.5	1	0.167	0.42	0.85	0.35
FPB-8	Fan Powered Box	277	2.9	1	0.25	0.80	0.85	0.68
FPB-10	Fan Powered Box	277	4.9	1	0.5	1.36	0.85	1.15
FPB-12	Fan Powered Box	277	10	1	1.5	2.77	0.85	2.35
FPB-14	Fan Powered Box	277	8	1	1	2.22	0.85	1.88
P-1	Pump	480	52	3	40	43.23	0.90	38.91
$\mathrm{P}-2$	Pump	480	52	3	40	43.23	0.90	38.91
P-3	Pump	480	27	3	25	22.45	0.90	20.20
P-4	Pump	480	27	3	25	22.45	0.90	20.20
P-5	Pump	480	7.6	3	5	6.32	0.90	5.69
P-6	Pump	480	7.6	3	5	6.32	0.90	5.69
P-7	Pump	480	3	3	1.5	2.49	0.90	2.24
P-8	Pump	480	3	3	1.5	2.49	0.90	2.24
P-10	Pump	480	1.8	3	1	1.50	0.90	1.35
P-20	Pump	480	1.4	3	0.75	1.16	0.90	1.05
P-21	Pump	120	2.9	1	0.167	0.35	0.85	0.30
P-30	Pump	120	9.5	1	0.4	1.14	0.85	0.97
P-31	Pump	120	2.2	1	0.083	0.26	0.80	0.21
P-40	Pump	480	1	3	0.5	0.83	0.90	0.75
P-41	Pump	120	2.2	1	0.083	0.26	0.80	0.21
P-50	Pump	480	1	3	0.5	0.83	0.90	0.75
P-60	Pump	120	2.9	1	0.167	0.35	0.85	0.30
P-61	Pump	120	2.2	1	0.083	0.26	0.80	0.21

Mechanical Loads								
Designation	Type	Voltage	F.L.Amps	Phase	Power (HP)	Power (KVA)	PF	Power (KW)
P-71	Pump	120	2.2	1	0.083	0.26	0.80	0.21
P-80	Pump	120	9.5	1	0.4	1.14	0.85	0.97
P-81	Pump	120	2.2	1	0.083	0.26	0.80	0.21
P-90	Pump	120	2.9	1	0.167	0.35	0.85	0.30
RFM-1	Radiant Floor Manifold	120	7.2	1	0.33	0.86	0.85	0.73
WW P-1	Pump	120	0.72	1	0.033	0.09	0.80	0.07
UH-1	Unit Heater	120	2.9	1	0.167	0.35	0.85	0.30
UH-2	Unit Heater	120	5.8	1	0.25	0.70	0.85	0.59
UH-3	Unit Heater	120	0.98	1	0.05	0.12	0.80	0.09
AC-1	Air Compressor	480	21	3	15	17.46	0.90	15.71
RP-1	Recirculation Pump	120	7.2	1	0.33	0.86	0.85	0.73
NGB-1	Gas Booster	480	2.1	3	1	1.75	0.90	1.57
D-1	Dryer	208	2.4	1	0.75	0.50	0.85	0.42
WH-1	W ater Heater	120	0.98	1	0.05	0.12	0.80	0.09
					Total:	24.81		22.01

Appendix C (Electrical Tables)

	Demand Load	Gross Sq.Ft.	Available KW	Demand Factor	Total Available KW	Available KW
Lighting	1.5	126054	189.08	1	189.08	
Performance Ltg	4	126054	504.22	0.4	201.69	
Receptacles	0.5	126054	63.03	1	63.03	
Mechanical	-------	-----------	638.55	1	638.55	
Heaters	-------	--	25.39	1.25	31.74	
Elevators	---	-				
Overall Building Demand Load: + Expansion (x1.25):					1124.08	-
					1405.10	3000.00

1. Note that some demand load and gross sq.ft. columns are blank, meaning the available KW loads were based on calculated loads within the building.
2. Performance lighting demand load was included as a separate item in the building demand load calculation because of the nature of the building occupancy and the intense lighting load that theatrical fixtures can have on an electrical system. The 0.4 d
3. I've been unable to ascertain the elevator loads in the building. I've contacted the architect multiple times to get the information and he has said that he's working on it. The elevator specifications were in volume one of the specification set and

IND\|VIDUAL TRANSFORMER SCHEDULE							
Linear Dry-Type Transformers							
TAG	PRIMARY VOLTAGE	SECONDARY VOLTAGE	SIZE	TYPE	TEMP. RISE	TAPS	MOUNTING
T0	1500KVA, 3PH, 3W	480/277, 3PH, 4W	N/A	N/A	N/A	N/A	PAD MOUNTED
T1	480/277, 3PH, 3W	208Y/120, 3PH, 4W	9	DRY	115 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T2	480/277, 3PH, 3W	208Y/120, 3PH, 4W	15	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T3	480/277, 3PH, 3W	208Y/120, 3PH, 4W	30	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T4	480/277, 3PH, 3W	208Y/120, 3PH, 4W	45	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T5	480/277, 3PH, 3W	208Y/120, 3PH, 4W	75	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T6	480/277, 3PH, 3W	208Y/120, 3PH, 4W	112.5	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T7	480/277, 3PH, 3W	208Y/120, 3PH, 4W	150	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T8	480/277, 3PH, 3W	208Y/120, 3PH, 4W	225	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T9	480/277, 3PH, 3W	208Y/120, 3PH, 4W	300	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
TSB	480/277, 3PH, 3W	208Y/120, 3PH, 4W	1500	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
Non-Linear Dry-Type Transformers							
TAG	PRIMARY VOLTAGE	SECONDARY VOLTAGE	SIZE	TYPE	TEMP. RISE	TAPS	MOUNTING
T1C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	9	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T2C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	15	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T3C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	30	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T4C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	45	DRY	150 DEGREE C	(6) 2.5%	CEILING SUSPENDED
T5C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	75	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T6C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	112.5	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T7C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	150	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
T8C	480/277, 3PH, 3W	208Y/120, 3PH, 4W	225	DRY	150 DEGREE C	(6) 2.5%	PAD MOUNTED
NOTES: 1. REFER TO SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS							

Structural Breadth (Roof Structure Coordination Review)

Green roof additions to existing buildings are much more difficult than designing a system to carry a green from the beginning. Ripping out structural steel and replacing it to introduce a green roof to a building would, in most instances, make it very difficult to justify the cost.

Appendix D (Luminaire Cut Sheets)

[Cut sheets for all referenced luminaires in the project are provided on the following pages, split between new design cuts and existing cuts. New design cut sheets are all labeled with a D prefix. Specifications for exact luminaire types can be found on the fixture schedule]

Cat. \#	Approvals	
Job	Type	

APPLICATIONS

- Walkways and courtyards.

SPECIFICATIONS

- Extruded aluminum square or round housing, with tamper resistant hardware. Flat top, or optional dome top for round FN2. Single screw access for top relamping.
- Sealed one-piece, clear acrylic lens. Specular, anodized aluminum optical systems; dual reflector, tube optics, or internal louvers.
- Concealed, galvanized steel anchor base. Four $1 / 2^{\prime \prime} \times 10^{\prime \prime}$ anchor bolts.
- Medium porcelain socket, pulse rated, with spring-loaded, nickel-plated center contact and reinforced lamp grip screw shell.
- HPF ballast, starting rated at $-20^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{F}\right.$ for HPS). Metal Halide is CWA or Super CWA type. HPS is CWA, HR, or Reactor type.
- Durable Lektrocote ${ }^{\circledR}$ TGIC thermoset polyester powder coat paint finish assures long life and maintenance-free service.

LISTINGS/CERTIFICATIONS

- UL1598 listed and CSA certified for outdoor use in wet locations.

	A	B	C	D	Weight
FN1	$6.75^{\prime \prime} \mathrm{sq}$.	$42.0^{\prime \prime}$	$6.0^{\prime \prime}$	$4.0^{\prime \prime}$	41 lbs
	171 mm	1067 mm	152 mm	102 mm	19 kg
FN2	$7.0^{\prime \prime}$ dia	$42.0^{\prime \prime}$	$6.0^{\prime \prime}$	$4.0^{\prime \prime}$	41 lbs
	178 mm	1067 mm	152 mm	102 mm	19 kg

ORDERING INFORMATION

TYPE: \qquad A

AUTH: \qquad DMM

DATE: \qquad

ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
05/15/03 Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071

Williams College
‘62 Center For Theatre \& Dance
TYPE:
AUTH: \qquad
DATE: \qquad

Nite Stor ${ }^{\text {m }}$

Features

- Tamper proof design.
- Raintight optical compartment.
- Enclosed wireway mounting knuckle.
- Clear, tempered glass lens, factory sealed.
- Machined aluminum construction with stainless steel hardware.
- \& (5) Listed with MR16 lamps to 50 watts.
- For use with remote transformers, see pages 92, 94, and 97.

Available in Bross, see page 90.

High performance optical system designed to accommodate T 8 and T5HO lamps.
Available in a wide range of factory colors.
Two lighting distributions to choose from: Indirect or Semi-indirect
Factory pre-wired with quick-wire connectors for fast, easy installation.
Affordable pricing \& fast delivery - standard orders can ship in 9 working days
Suspended and wall mount options available

Order Number Guide

Cross Section

Modules

Linear runs are made by combining 4ft, 8ft and 12ft modules

Ends / Joints

END-CAP 8913EANA_

inline joint 8913JNNN
\qquad

Specifications

Housing
Die-formed 20 gauge cold-rolled steel.

Ends

Molded reinforced high-impact polymer. Baked Powder coat finish.

Joints

Self-aligning joining system with hands-free pre-joining wire access.

Optical System

Constructed of highly specular aluminum, 96% reflective white steel, and perforated optical filter with acrylic overlay to produce a semi-indirect distribution.

Mounting

Aircraft cable gripper is tamper-resistant and provides infinite vertical adjustment capability. Aircraft cable, crimp and cable gripper independently tested to meet stringent safety requirements.

Electrical

All luminaires shall be factory pre-wired to section ends with quick-wire connectors.

Ballast

Electronic.
Approvals
Certified to UL \& CSA standards.

Finish

High-quality powder coat, factory applied to meet AAMA 2603-98. Available in Ledalite Standard White (textured matte finish), a selection of optional factory colors (see factory color chart), or custom colors. Consult factory for details.

Available with Response Integrated Controls See www.ledalite.com for details

Due to continuing product improvements, Ledalite reserves the right to change specifications without notice.

Photometry

CANDELA DISTRIBUTION						
Vert. Angle	Horizontal Angle					
$\mathbf{0}$	$\mathbf{2 2 . 5}$	$\mathbf{4 5}$	$\mathbf{6 7 . 5}$	$\mathbf{9 0}$	Zonal	
$\mathbf{0}$	21	21	21	21	21	
$\mathbf{5}$	21	21	21	20	20	2
$\mathbf{1 5}$	20	21	22	23	24	7
$\mathbf{2 5}$	20	20	23	26	27	11
$\mathbf{3 5}$	18	18	25	27	28	15
$\mathbf{4 5}$	16	19	26	29	30	19
$\mathbf{5 5}$	14	21	29	31	32	24
$\mathbf{6 5}$	13	20	27	26	26	24
$\mathbf{7 5}$	14	18	20	20	19	20
$\mathbf{8 5}$	14	16	19	19	18	20
$\mathbf{9 0}$	12	22	19	18	15	
$\mathbf{9 5}$	113	331	429	338	352	409
$\mathbf{1 0 5}$	438	1456	1795	1660	1709	1564
$\mathbf{1 1 5}$	821	1712	2863	3085	3136	2365
$\mathbf{1 2 5}$	1202	1871	2970	3819	4008	2502
$\mathbf{1 3 5}$	1553	2038	2836	3515	3748	2141
$\mathbf{1 4 5}$	1854	2199	2745	3212	3366	1691
$\mathbf{1 5 5}$	2089	2307	2652	2940	3031	1212
$\mathbf{1 6 5}$	2254	2355	2529	2675	2715	713
$\mathbf{1 7 5}$	2342	2362	2394	2433	2442	235
$\mathbf{1 8 0}$	2353	2353	2353	2353	2353	

COEFFICIENTS OF UTILIZATION (\%)												
$\begin{array}{\|l\|} \hline \text { Ceiling } \\ \text { Wall } \\ \text { RCR } \\ \hline \end{array}$	80				70			50				0
	70	50	30	10	70	50		50	30	010		0
0	88	88	88	88	76	76	76	52	52	2	2	0
1	80	76	73	70	68	65	63	45	43	342	2	0
2	73	67	61	57	62	57	53	39	37	734	34	0
3	66	58	52	47	56	50	45	34	31	129	29	0
4	60	51	45	39	51	44	38	30	27	724	24	0
5	55	45	38	33	47	39		27	23	320		0
6	51	40	33	28	43	35	29	24	20	017	7	0
7	46	36	29	24	40	31	25	21	18	815	15	0
8	43	32	26	21	36	28	22	19	16	613	3	0
9	40	29	23	18	34	25		17	74	411	1	0
10	37	26	20		31	23		16	12	1210	0	0
Based on a floor reflectance of 0.2												

Note: The stated values for lamp lumens and luminaire efficiency consider the lamp/luminaire combination at conditions similar to that of most architectural spaces. Lamp manufacturers' data states that T-5 high output lamps produce a maximum output of 5000 lumens at 35° Celsius. Further, the IESNA's standards for photometric testing require an ambient temperature of 25° Celsius. At 25° Celsius, the bare T-5 high output lamp produces 93% of its maximum output, or 4650 lumens. When placed inside a luminaire, the T-5 high output lamp operates at a slightly higher ambient temperature than in free air. The increase in ambient temperature raises the lamp's output above 4650 lumens. This temperature effect causes the lamp/luminaire combination to produce more light output than the bare lamp alone. As a result, in very optically efficient luminaires, luminaire efficiencies over 100\% are possible and correct. Ledalite feels that this method of photometric testing is the best representation of lamp and luminaire performance, adheres to current IESNA standards, and most closely represents how the lighting system will operate in the field.

Note : IES photometric files available for download at www.ledalite.com

AUTH: \qquad
DMM
DATE: \qquad

A ADVANCE

Electrical Specifications

VCN-132-MC	
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ}\right.$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F21T5	1	21	$50 / 10$	0.10	27	1.10	10	0.98	1.7
F25T8	1	25	$0 /-18$	0.09	25	0.98	10	0.98	1.7
* F28T5	1	28	$50 / 10$	0.11	30	0.98	10	0.99	1.7
F32T8	1	32	$0 /-18$	0.11	30	0.98	10	0.98	1.7
F32T8/ES (30W)	1	30	$60 / 16$	0.10	28	0.98	10	0.98	1.7

Diag. 63
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25 L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91^{\prime}
$91 / 2$	$12 / 25$	$11 / 20$	$891 / 100$
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

```
Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.
```


ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086

AUTH: \qquad

A adVance

Electrical Specifications

VCN-2M32-MC	
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ}\right.$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F21T5	2	21	$50 / 10$	0.18	50	1.10	10	0.98	1.7
F25T8	2	25	$0 /-18$	0.18	49	0.88	10	0.99	1.7
* F28T5	2	28	$50 / 10$	0.22	60	0.98	10	0.99	1.80
F32T8	2	32	$0 /-18$	0.21	59	0.88	10	0.99	1.7
F32T8/ES (30W)	2	30	$60 / 16$	0.20	54	0.88	10	0.99	1.63

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25 L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	$8.91^{\prime \prime}$
$91 / 2$	$12 / 25$	$11 / 20$	$891 / 100$
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

[^2]
ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086

AUTH: \qquad DMM

High performance optical system designed to accommodate T 8 and T5HO lamps.
Available in a wide range of factory colors.
Two lighting distributions to choose from: Indirect or Semi-indirect
Factory pre-wired with quick-wire connectors for fast, easy installation.
Affordable pricing \& fast delivery - standard orders can ship in 9 working days
Suspended and wall mount options available

Order Number Guide

Cross Section

Modules

Linear runs are made by combining 4 ft , 8 ft and 12 ft modules

Ends / Joints

END-CAP
8913EANA
INLINE JOINT

8913JNNN

AUTH: \qquad
DATE: 04/12/07

Specifications

Housing
Die-formed 20 gauge cold-rolled steel.

Ends

Molded reinforced high-impact polymer. Baked Powder coat finish.

Joints

Self-aligning joining system with hands-free pre-joining wire access.

Optical System

Constructed of highly specular aluminum, 96% reflective white steel, and perforated optical filter with acrylic overlay to produce a semi-indirect distribution.

Mounting

Aircraft cable gripper is tamper-resistant and provides infinite vertical adjustment capability. Aircraft cable, crimp and cable gripper independently tested to meet stringent safety requirements.

Electrical

All luminaires shall be factory pre-wired to section ends with quick-wire connectors.

Ballast

Electronic.
Approvals
Certified to UL \& CSA standards.

Finish

High-quality powder coat, factory applied to meet AAMA 2603-98. Available in Ledalite Standard White (textured matte finish), a selection of optional factory colors (see factory color chart), or custom colors. Consult factory for details.

Available with Response Integrated Controls See www.ledalite.com for details

Due to continuing product improvements, Ledalite reserves the right to change specifications without notice.

Photometry

CANDELA DISTRIBUTION						
Vert. Angle	Horizontal Angle					
$\mathbf{0}$	$\mathbf{2 2 . 5}$	$\mathbf{4 5}$	$\mathbf{6 7 . 5}$	$\mathbf{9 0}$	Zonal	
$\mathbf{0}$	21	21	21	21	21	
$\mathbf{5}$	21	21	21	20	20	2
$\mathbf{1 5}$	20	21	22	23	24	7
$\mathbf{2 5}$	20	20	23	26	27	11
$\mathbf{3 5}$	18	18	25	27	28	15
$\mathbf{4 5}$	16	19	26	29	30	19
$\mathbf{5 5}$	14	21	29	31	32	24
$\mathbf{6 5}$	13	20	27	26	26	24
$\mathbf{7 5}$	14	18	20	20	19	20
$\mathbf{8 5}$	14	16	19	19	18	20
$\mathbf{9 0}$	12	22	19	18	15	
$\mathbf{9 5}$	113	331	429	338	352	409
$\mathbf{1 0 5}$	438	1456	1795	1660	1709	1564
$\mathbf{1 1 5}$	821	1712	2863	3085	3136	2365
$\mathbf{1 2 5}$	1202	1871	2970	3819	4008	2502
$\mathbf{1 3 5}$	1553	2038	2836	3515	3748	2141
$\mathbf{1 4 5}$	1854	2199	2745	3212	3366	1691
$\mathbf{1 5 5}$	2089	2307	2652	2940	3031	1212
$\mathbf{1 6 5}$	2254	2355	2529	2675	2715	713
$\mathbf{1 7 5}$	2342	2362	2394	2433	2442	235
$\mathbf{1 8 0}$	2353	2353	2353	2353	2353	

COEFFICIENTS OF UTILIZATION (\%)												
$\begin{array}{\|l\|} \hline \text { Ceiling } \\ \text { Wall } \\ \text { RCR } \\ \hline \end{array}$	80				70			50				0
	70	50	30	10	70	50		50	30	010		0
0	88	88	88	88	76	76	76	52	52	2	2	0
1	80	76	73	70	68	65	63	45	43	342	2	0
2	73	67	61	57	62	57	53	39	37	734	34	0
3	66	58	52	47	56	50	45	34	31	129	29	0
4	60	51	45	39	51	44	38	30	27	724	24	0
5	55	45	38	33	47	39		27	23	320		0
6	51	40	33	28	43	35	29	24	20	017	7	0
7	46	36	29	24	40	31	25	21	18	815	15	0
8	43	32	26	21	36	28	22	19	16	613	3	0
9	40	29	23	18	34	25		17	74	411	1	0
10	37	26	20		31	23		16	12	1210	0	0
Based on a floor reflectance of 0.2												

Note: The stated values for lamp lumens and luminaire efficiency consider the lamp/luminaire combination at conditions similar to that of most architectural spaces. Lamp manufacturers' data states that T-5 high output lamps produce a maximum output of 5000 lumens at 35° Celsius. Further, the IESNA's standards for photometric testing require an ambient temperature of 25° Celsius. At 25° Celsius, the bare T-5 high output lamp produces 93% of its maximum output, or 4650 lumens. When placed inside a luminaire, the T-5 high output lamp operates at a slightly higher ambient temperature than in free air. The increase in ambient temperature raises the lamp's output above 4650 lumens. This temperature effect causes the lamp/luminaire combination to produce more light output than the bare lamp alone. As a result, in very optically efficient luminaires, luminaire efficiencies over 100\% are possible and correct. Ledalite feels that this method of photometric testing is the best representation of lamp and luminaire performance, adheres to current IESNA standards, and most closely represents how the lighting system will operate in the field.

Note : IES photometric files available for download at www.ledalite.com
\qquad
DATE: \qquad

A ADVANCE

Electrical Specifications

VCN-132-MC	
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ}\right.$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F21T5	1	21	$50 / 10$	0.10	27	1.10	10	0.98	1.7
F25T8	1	25	$0 /-18$	0.09	25	0.98	10	0.98	1.7
* F28T5	1	28	$50 / 10$	0.11	30	0.98	10	0.99	1.7
F32T8	1	32	$0 /-18$	0.11	30	0.98	10	0.98	1.7
F32T8/ES (30W)	1	30	$60 / 16$	0.10	28	0.98	10	0.98	1.7

Diag. 63
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25 L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91^{\prime}
$91 / 2$	$12 / 25$	$11 / 20$	$891 / 100$
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

```
Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.
```


ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086
\qquad
DATE: \qquad

A adVance

Electrical Specifications

VCN-2M32-MC	
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wand	Min. Start Temp $\left({ }^{\circ}\right.$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F21T5	2	21	$50 / 10$	0.18	50	1.10	10	0.98	1.7
F25T8	2	25	$0 /-18$	0.18	49	0.88	10	0.99	1.7
*F28T5	2	28	$50 / 10$	0.22	60	0.98	10	0.99	1.80
F32T8	2	32	$0 /-18$	0.21	59	0.88	10	0.99	1.7
F32T8/ES (30W)	2	30	$60 / 16$	0.20	54	0.88	10	0.99	1.63

Diag. 64
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25 L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50^{"}$	1.08 "	$1.05{ }^{\mathrm{\prime}}$	8.91^{\prime}
$91 / 2$	$12 / 25$	$11 / 20$	$891 / 100$
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

```
Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.
```


ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086
\qquad
DATE: \qquad

Projector body

- Suitable for wet locations, IP66 rated
- Compact low profile under 2" diameter
- Lengths available in $1^{\prime}, 2^{\prime}, 3^{\prime}$ and 4^{\prime}
- Consult factory for other lengths
- Grey powder coat (RAL\#9006) Standard
- For additional colors consult factory
- 24V DC Remote constant voltage (R56) power supply
- UL Listed
- 10 Year Warranty anti-corrosion

3 Year Warranty on driver

Lamp / Optics

- Nominal LED spacing: 1" or 2" on center - Light source: High power 1W Warm White LED - Aluminum reflector - $10^{\circ}, 25^{\circ} \& 50^{\circ}$ refractive spot optics
50,000 hour lamp life @ 70\% lumen output
- Remote Power Supply
- 120-277V Primary 24VDC Secondary power supply (required) ordered separately - 15' max length for remote power supply - Consult factory for longer lengths - Modules can be daisy chained together for Linear installations with 0 clearance between fixtures (Consult Factory)
Cover
- UV polycarbonate lens cover
- UV Stabilized (Non yellowing)
- Mounting
- Can be mounted end to end with zero
clearance
- Mounted horizontal or vertical and can be rotated 220° on its axis
- Features
- Available in $1^{\prime}, 2^{\prime}, 3^{\prime} \& 4^{\prime}$ lengths
- Adjustable mounting brackets
- High light output LEDs (1.2W/LED)
- IP 66 rated
- Class 1 fixture continuous runs of
15^{\prime} plus available (consult factory)

Applications

- Building facade lighting
- Wall washing
- Area Lighting
- Effects Lighting

SURFACE REAR MOUNTED PROJECTOR High Output LED Source 1W / 24V
MINILINI

Dimensions

A Bracket Length Standard $1^{\prime \prime}$Bracket Width	$0.75^{\prime \prime}$	$4.5^{\prime \prime}$	$12.5^{\prime \prime}$	$1.75^{\prime \prime}$
$3^{\prime \prime}$	$0.75^{\prime \prime}$	$4.5^{\prime \prime}$	$24.5^{\prime \prime}$	$1.75^{\prime \prime}$
$5^{\prime \prime}$	$0.75^{\prime \prime}$	$4.5^{\prime \prime}$	$36.5^{\prime \prime}$	$1.75^{\prime \prime}$
			$48.5^{\prime \prime}$	$1.75^{\prime \prime}$
(ixture				

U. LED technology is changing rapidly, consult website for most current information

[^3]\qquad
DATE: \qquad

-MINILINI

Required Choices for Mounting Fixture

LED Spacing	Fixture Length	Max \# of Fixtures per 96W Driver
$1^{\prime \prime}$ Spacing	1 foot	6
$1^{\prime \prime}$ Spacing	2 foot	3
$1^{\prime \prime}$ Spacing	3 foot	2
$1^{\prime \prime}$ Spacing	4 foot	1
$2^{\prime \prime}$ Spacing	1 foot	12
$2^{\prime \prime}$ Spacing	2 foot	6
$2^{\prime \prime}$ Spacing	3 foot	4
$2^{\prime \prime}$ Spacing	4 foot	3

* Overall run length not to exceed 60' 1513 E. Saint Gertrude

Tel 714 957-4960 Fax 714 957-4965

TYPE:
AUTH: \qquad
DATE: 04/12/07

A concealed, flexible, energy-efficient light
COVELUM ${ }^{\text {TM }}$
fixture for ceiling and wall curves, cabinets,
LED galleries, and elevators. Uses 0.24W 12V DC,

FEATURES

- Flexible, field cuttable system
- Low maintenance, energy efficient lighting for interior applications.
- Uses 0.24W, 12V DC, directional LEDs in festoon envelope
- 3 LEDs per module available in amber, red, green, blue, and white.
- LED life:
- 100,000 hours for amber, red, green
- 40,000 hours for blue and white
- Lamp spacing: 2.5", 3", 4", 6" O.C.
- Light is distributed in individually adjustable directional LED modules, 220° viewing angle.
- Aluminum mounting channel for linear lighting.
- Linear lens mounts in channel to diffuse light glare.
- Class II 12V DC transformer required. See Transformer specification sheet.

LISting

- U.L. Listed

LED DATA

LAMP	$\begin{aligned} & \text { DESIGN } \\ & \text { VOLTAGE* } \end{aligned}$	WATTAGE	LAMP LIFE ${ }^{\dagger}$
Covelum LED	12V DC	0.24W	White, Blue,
			Green -
			40,000 hrs.
			Red, Amber 100,000 hrs
* Lamps operate at	tage. + Rea	ings at 80%	of design voltage.

LED SPACING

Different LED spacings can create dramatically varied effects
Tighter spacing is most appropriate for close range viewing applications. Perspective also alters the effect of different spacings.

MAX. LEDS PER FEED POINT

LAMP/SYSTEM	WATtAGE	VOLTAGE	AMPS	MAX. LAMPS PER FEED POINT
Covelum LED	0.24 W	12 V	5 A	200

MAXIMUM FIXTURE RUN LENGTH (Lmax)
Determine maximum fixture run length with the following formula:
Lmax = F x P x S / W

F:	Factor for safety $(0.8 \sim 0.9)$
P:	Transformer- or breaker-rated power
S:	LED or lamp spacing
W:	LED or lamp wattage

MEAN TIME BETWEEN FAILURES (MTBF) FOR LEDS
While Tivoli utilizes LEDs provided by industry leading vendors, these are electrical components with calculated mean time between failure (MTBF). MTBF for LEDs typically exceeds 100,000 hours. MTBF indicates the point at which 50\% of the LEDs will lose 50% of their original brightness. Conditions such as excessive voltage, vibration, heat, and other adverse environments may negatively effect the life of LEDs.

CANDELA DISTRIBUTION

* Candela distribution may vary with lamp and power supply conditions.

1550 E. Saint Gertrude Place Santa Ana, CA 92705

COVELUM LED
ORDERING INFORMATION

DESCRIPTION	CAT. NO.	$\begin{aligned} & \text { LAMP } \\ & \text { SPACING } \end{aligned}$	$\begin{aligned} & \text { LAMP } \\ & \text { COLOR } \end{aligned}$
$\begin{array}{\|l} \text { Covelum LED } \\ \text { 12V DC } \end{array}$	CLL-2-A-12VDC	2.5" 0.C.	Amber
	CLL-3-A-12VDC	3" 0.C.	
	CLL-4-A-12VDC	4" O.C.	
	CLL-6-A-12VDC	$6^{\prime \prime}$ O.C.	
	CLL-2-R-12VDC	2.5" 0.C.	Red
	CLL-3-R-12VDC	3" 0.C.	
	CLL-4-R-12VDC	4" O.C.	
	CLL-6-R-12VDC	$6^{\prime \prime}$ O.C.	
	CLL-2-G-12VDC	2.5" 0.C.	Green
	CLL-3-G-12VDC	3" 0.C.	
	CLL-4-G-12VDC	4" O.C.	
	CLL-6-G-12VDC	6" O.C.	
	CLL-2-B-12VDC	2.5" 0.C.	Blue
	CLL-3-B-12VDC	3" 0.C.	
	CLL-4-B-12VDC	4" O.C.	
	CLL-6-B-12VDC	$6^{\prime \prime}$ O.C.	
	CLL-2-W-12VDC	2.5" O.C.	White
	CLL-3-W-12VDC	3" 0.C.	
	CLL-4-W-12VDC	4" O.C.	
	CLL-6-W-12VDC	6 " O.C.	

FIXTURE SELECTION

Lamp Spacing

Select longest lamp spacing necessary for desired effect. (Tight lamps spacing does not add more impact, but lamps will blur to appear like a light cable instead of separate distinct lamps.)

Lamp Type

$0.24 \mathrm{~W}, 12 \mathrm{~V}$ DC, LEDs in amber, red, green, blue and white.

Voltage Drop

Consider voltage drop parameters and maximum fixture length. Refer to Tivoli voltage drop chart and suggested system layout.

Maximum Fixture Length

- Max. load of fixture must not exceed capacity of recommended transformer
- For longer runs use multiple fixtures with independent feed run to transformer

ACCESSORIES

DESCRIPTION	CAT.NO
Junction Box	CL-JBOX
End Caps	CLL-EC
Polycarbonate Mounting Clamp	CLL-MC
Terminal Block	TERMBLK
Linear Aluminum Channel, 8' sections	CLLCHAN
Opaque Linear Lens Cover, 8' sections	CLL-LC
Amber LED	CLLA
Red LED	CLLR
Green LED	CLLG
Blue LED	CLLB
White LED	CLLW

CHANNEL END CAPS
Clear poly carbonate Channel End Caps cover both ends of Aluminum Channel and Opaque Lens to prevent debris from entering Channel.

For straight run applications. Channel screws in place, lamp sockets snap into channel ensuring linear integrity and reducing installation time. The finish is standard satin aluminum. Comes in 8^{\prime} sections.

JUNCTION BOX
Covers connections. Terminal block connector is mounted inside. One end of connector screws directly into the Covelum LED fixture, the other accepts AWG \# 10, 12, 14 wire.

CLL-CHEC
Each length of Covelum LED comes with vinyl end caps that protect and insulate the conductors at the end of a run.

POLYCARBONATE MOUNTING CLAMP
Clear polycarbonate mounting clip secures Covelum to surface with single screw on each side of clip. (Screws not provided).

Williams College
‘62 Center For Theatre \& Dance
TYPE:
AUTH: \qquad

Hand Rail Size Options

Power Supply (Driver) Information
Standard Light Output

TYPE	SUPPLIES	REMOTE DISTANCE
24 v 20 w	UP T0 78"	32-0" (w/18awg)
24v100w	UP T0 35'-0"	18'-0" (w/18awg)
	(2) RUNS UP To	46-0" (w/14awg)
	49 WITH (1) RUN NTE 35'-0"	71'-0" (w/12awg)

High Output

TTPE	SUPPLES	REMOTE DISTANCE
$24 \mathrm{v100w}$	UP TO $12-0^{\prime \prime}$	$18^{\prime}-0^{\prime \prime}(\mathrm{w} / 18 \mathrm{AWG})$
		$46-0{ }^{\prime \prime}(\mathrm{w} / 14 \mathrm{AWG})$
		$71^{\prime}-0^{\prime \prime}(\mathrm{w} / 12 \mathrm{AWG})$

Application

ANSI and ADA compliant luxrail, is an indoor/outdoor handrail that delivers functional illumination. Two intensities may be specified; "standard light output" \& "high output". The standard lightoutput version delivers illuminance levels appropriate for exterior applications (3 to 4 footcandles at grade) as well as dark interior environments with low ambient illumination levels, (i.e. theatres, themed environments). The high output version delivers illuminance levels applicable to interior environments providing in excess of 10 footcandles along the path of egress (ANSI required). Independent photometric test reports and IES Format data are available upon request from io Lighting.
luxrail's standard handrail gripping surfaces are circular in cross section and meet ADAAG (Americans with Disability Act Accessibility Guidelines). Beam spread options include 10, 45, and 65 degrees. The 45 and 65 degree beam patterns are most suitable for illuminating pathways while the 10 degree beam spread offers accent lighting to optional glass or stainless steel cable railing infills. Reference page 8 for information regarding infill options. LED lumen depreciation at $50,000 \mathrm{hrs}$. is 30%.

Light Output

luxrail is available with two luminous intensities:
Standard:

- Warm White: 38 lms/ft
- Cool White: 48 Ims/ft

High Output:

- Warm White: 127 Ims/ft
- Cool White: $145 \mathrm{Ims} / \mathrm{ft}$

Construction

Iuxrail is available in stainless steel, aluminum or brass. Iuxrail may be post mounted or wall mounted. Mounting hardware (post or wall) is required up to 5^{\prime} or 6^{\prime} O.C., depending on the handrail alloy. The lighting fixture component of the luxrail is a stand alone unit and is available in incremental nominal lengths that range from 6" to 60". Vandal resistant access chamber allows units to be removed for maintenance purposes.

The light fixture's housing is made of a light weight, yet durable aluminum, providing the recommended heat sink requirements for the LEDs. Housing, optical assembly and stainless steel end caps are bonded to prevent water infiltration.

Electrical

luxrail houses a low voltage LED based light fixture which is integrated into the underside of the handrail. It comes complete with the linear light fixture installed in the handrail and required power supplies (aka "drivers"). Electrical "daisy chain" connections must be made on site. 120 or 277 volt drivers are available. The drivers must be remotely located. Refer to Driver Chart (shown on left) for additional information.

Power Consumption

- standard: 2 w/ft
- high output: $8 \mathrm{w} / \mathrm{ft}$

Finish

luxrail is available in a variety of finishes: polished or brushed stainless steel (satin finish with brush grain along the longitudinal axis), clear anodized aluminum and polished brass. Custom finishes may be available upon request.

AUTH. \qquad
DATE: \qquad

Order Code

Williams College ‘62 Center For Theatre \& Dance
type: D-4
AUTH: \qquad
DMM
DATE: 04/12/07

handrail options

Stainless Steel

A	B	C
$1.66^{\prime \prime}$	$1^{\prime \prime}$	$.059^{\prime \prime}$
$1.90^{\prime \prime}$	$1.25^{\prime \prime}$	$.059^{\prime \prime}$
$2^{\prime \prime}$	$1.25^{\prime \prime}$	$.059^{\prime \prime}$

Aluminum

A	B	C
$1.66^{\prime \prime}$	$1^{\prime \prime}$	$.109^{\prime \prime}$
$1.90^{\prime \prime}$	$1.25^{\prime \prime}$	$.109^{\prime \prime}$

wall mounted details

Wall mounted ramp rail

Return to wall

Return to wall electrical feed

Wall bracket
(may be used as an electrical feed)

Williams College ‘62 Center For Theatre \& Dance

type: D-4

AUTH: \qquad
DATE: 04/12/07

line
 series . 75

Beam Spread Options

Power Supply (Driver) Information
Standard Light Output

TYPE	SUPPLIES	REMOTE DISTANCE
24v20w	UP T0 78"	32'-0" (w/18awg)
24v100w	UP To 35'-0"	18'-0" (w/18awg)
	(2) RUNS UP To	46-0" (w/14awg)
	49' with (1) run NTE 35'-0"	71'-0" (w/12awg)

High Output

TTPE	SUPPLIES	Remote distance
$24 v 100 \mathrm{w}$	UP To $12^{\prime}-0^{\prime \prime}$	$18^{\prime}-0^{\prime \prime}(w / 18$ AWG $)$
		$46-0^{\prime \prime}(w / 14$ AWG $)$
		$71^{\prime}-0^{\prime \prime}(w / 12 A W G)$

Application

io lighting's line series .75 is approximately .75" x .75" in cross section. UL listed for dry locations, its low profile housing enables functional luminous intensities from "tight" architectural details such as niches, coves, handrails \& casework. Similar to halogen light sources, LEDs are point sources that offer superior definition to three dimensional objects and sparkle to reflective surfaces.
series .75 is a low voltage linear accent luminaire that may be ordered in incremental nominal lengths that range from 6 " to $96^{\prime \prime}$. Optional beam spreads along the perpendicular axis of the fixture include $10^{\circ}, 45^{\circ}$, and 65°. For details on the asymmetric beam spread, see dedicated specification sheet. Average rated life for series .75 is 50,000 hours. Lamp lumen depreciation at 50,000 hrs. is 30%.

Light Output

line series .75 is available with two lumen outputs for white light only. Red, green, blue and amber are available in standard output only:

Standard:

- Warm White: 38 Ims/ft
- Cool White: 48 Ims/ft

High Output:

- Warm White: $127 \mathrm{lms} / \mathrm{ft}$
- Cool White: 145 Ims/ft

Refer to light output tables for footcandle values at various distances. IES format files may be obtained from the factory or downloaded from iolighting.com.

Construction

The light weight, yet durable extruded aluminum housing provides recommended heat sink requirements for LEDs. Precision optic is composed of a customized acrylic material that offers very high transmisivity, UV stability, and excellent longevity. series 75 is UL listed for dry locations only.

Electrical

Universal 120 or 277 Volt supply required for 24 volt remote driver. 4'-0" 22 AWG, 600 volt TFFN rated power cords are supplied with strain reliefs for both electric feed and connectors (for continous row application).

Power Consumption

- standard: 2 w/ft
- high output: $8 \mathrm{w} / \mathrm{ft}$

Finish

Anodized aluminum finish is standard. Custom finishes available upon request.

DATE: 04/12/07

Williams College
TYPE:
\qquad
DATE: 04/12/07

FEATURES

Triples-V $26 / 6$ is an efficient $6^{\prime \prime}$ aperture low brightness downlight designed for use with one 26 -watt triple-tube compact fluorescent lamp of the 4 -pin types made by GE, Sylvania or Philips. Triples-V 26/6 provides a shielding angle of 38°.

One housing allows interchangeable use of downlight and wallwash reflectors, permitting housings to be installed first and reflectors to be installed or changed at any time.

Triples-V 26/6 uses one 26-watt lamp providing 1800 lumens (more than a 100-watt incandescent), a 10,000-hour life, a color rendering index (CRI) of 82 , and color temperatures as warm as $2700^{\circ} \mathrm{K}$ (nearly duplicating the color qualities of incandescent).

Reflectors are available in clear, natural aluminum in three finishes: EvenTone, our standard clear finish, partially diffuse, anti-iridescent and gently luminous in appearance; OptiTone, specular and anti-iridescent, with minimum brightness and maximum efficiency; and EasyTone, diffuse and luminous. Additionally, reflectors are available in champagne gold, wheat, pewter and bronze. Wallwash $\left(120^{\circ}\right)$, corner wallwash $\left(210^{\circ}\right)$ and double wallwash $\left(2 \times 120^{\circ}\right)$ reflectors are also available.

Triples-V $26 / 6$ includes a pair of mounting bars ($3 / 4^{\prime \prime} \times 27^{\prime \prime} \mathrm{C}$ channel). Specialty bars for wood joist and T-bar installations are also available.

APPLICATIONS

Fixture is suitable for downlighting or wallwashing in nearly all architectural environments, especially those spaces where non-directional luminaires are preferred over rectangular troffers. These include offices, stores, lobbies, corridors, restrooms and public areas.

Class P electronic ballast, suitable for use in a fire rated ceiling, and approved for ten $\# 12$ wire $75^{\circ} \mathrm{C}$ branch circuit pull-through wiring. Removal of the reflector allows access to the ballast and junction box.

PRODUCT CODE
For complete product code, list basic unitand selectone item from each following box.

Basic Unit... TRPV 26/6	
Reflector Type	
Downlightno suffix	Corner Wallwash CWW
Wallwash.................... WW	Double Wallwash DWW
Voltage	
120 volt service 120	277 volt service 277
Reflector and Flange Color EvenTone Clear	Overlap Flush
	..VOL.............................. VFL
OptiTone Clear COL............................. CFL	
EasyTone Clear ECOL........................... ECFL	
Champagne Gold GOL.............................GFL	
Wheat................................ WHOL WHFL	
Pewter POLPFL	
Bronze.................................. ZOL............................. ZFL	
Other reflector finishes are available on special order.	
Standard reflector flange continues reflector flanges are available on special order. Add	h. White painted flanges and custom painted (white flange) or CCF (custom color flange).

OPTIONS

Specify by adding to the basic unit.
Dimmable 3-wire ballast; not for outdoor application- DM
Emergency battery pack operates lamp in event of
power outage. Fixture footprint increases to $10 \times 17 \frac{1}{2} 2^{\prime \prime}$
$(254 \times 444 \mathrm{~mm})$. Not available with a CWW reflector.
Not for outdoor application
$1 / 8^{\prime \prime}(3 \mathrm{~mm})$ thick clear acrylic shield,
spring-mounted within reflector ..

- PS
- For combinations of the Options above, contact factory or Edison Price Lighting representative.
- A modified fixture suitable for $2^{\prime \prime}$ maximum ceiling thickness is available on special order. Contact factory.
- A modified fixture suitable for 347 -volt service is available on special order. Contact factory.
- An install-from-below version of this fixture, suitable for installation outside North America, is available on special order. Contact factory.
- Decorative reflector rings are available on special order. Contact factory.

EDISON PRICE

41-50 22 ${ }^{\text {ND }}$ STREET, LIC NY 11101 tEL 718.685.0700 FAX 718.786.8530 www.epl.com ${ }^{\circ}$ Copyright, Edison Price Lighting 2007

AUTH.

TRIPLES-V 26/6

PHOTOMETRIC REPORT

- in Report No. 44968. Original Independent Testing Laboratories, Inc. (ITL) test report furnished upon request.

Luminaire \qquad recessed compact fluorescent downlight with spun aluminum reflector, specular finish Lamp \qquad Philips 26-watt triple-tube compact fluorescent, 4-pin GX24q-3 base, 1800 lumens
Efficiency \qquad 62.9\%

Spacing Criteria
$0^{\circ}-1.1,90^{\circ}-1.1$

BALLAST INFORMATION

Voltage	120	277
Input Watts	28	28
Line Current (A)	.25	.11
Power Factor (\%)	>98	>98
THD (\%)	<10	<10
Min. Starting Temp* ${ }^{\circ}{ }^{\circ}$ F)	0	0

ZONAL LUMEN SUMMARY

Zone	Lumens	\% Lamp	\% Fixture
$0-30^{\circ}$	650	36.1	57.4
$0-40^{\circ}$	963	53.5	85.1
$0-60^{\circ}$	1132	62.9	100.0
$0-90^{\circ}$	1132	62.9	100.0
$90-180^{\circ}$	0	0.0	0.0
$0-180^{\circ}$	1132	62.9	100.0

LUMINANCE DATA

(Candela $/ \mathrm{m}^{2}$)		
Vertical	Average	Average

Vertical Angle	Average 0° Longitude	Average 90° Longitude
45	14858	16429
55	0	0
65	0	0
75	0	0
85	0	0

To convert cd/m ${ }^{2}$ to footlamberts, multiply by 0.2919 .

COEFFICIENTS OF UTILIZATION - ZONAL CAVITY METHOD
Effective Floor Cavity Reflectance 20\%

Ceiling Reflectance (\%)		80			70				50			30			10			0
Wall Reflectance (\%)	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	
Room Cavity Ratio																		
0	75	75	75	75	73	73	73	73	70	70	70	67	67	67	64	64	64	63
1	71	69	68	66	70	68	66	65	65	64	63	63	62	61	61	60	59	58
2	67	64	61	59	66	63	60	58	61	59	57	59	57	56	57	56	55	54
3	63	59	56	53	62	58	55	53	57	54	52	55	53	51	54	52	50	49
4	60	55	51	48	59	54	50	48	53	50	47	51	49	47	50	48	46	45
5	56	51	47	44	55	50	46	44	49	46	43	48	45	43	47	44	42	41
6	53	47	43	40	52	47	43	40	46	42	40	45	42	39	44	41	39	38
7	50	44	40	37	49	43	39	37	43	39	37	42	39	36	41	38	36	35
8	47	41	37	34	47	41	37	34	40	36	34	39	36	34	38	36	33	33
9	45	38	34	31	44	38	34	31	37	34	31	37	33	31	36	33	31	30
10	42	36	32	29	42	36	32	29	35	31	29	34	31	29	34	31	29	28

TRIPLES-V 26/6 WW

WALLWASH INFORMATION

Distance From Ceiling (Feet)	$2^{\prime} 6^{\prime \prime}$ From Wall; 2'6" O.C.		3^{\prime} From Wall; 3' O.C.		$3^{\prime} 6^{\prime \prime}$ From Wall; 3'6" O.C.	
	Below					
Fixture	Between	Fixtures	Below	Between	Below Fixture	Between Fixtures
1	7	7	4	4	3	3
2	11	10	7	6	5	4
3	17	18	9	9	6	5
4	20	20	13	14	8	9
5	18	18	14	14	10	10
6	15	15	13	13	10	10
7	12	13	11	11	9	10
8	10	10	9	9	8	8
9	9	9	8	8	7	7
10	7	7	7	7	6	6
11	6	6	6	6	6	6
12	5	5	5	5	5	5

All vertical footcandles are initial values with no contribution from ceiling or floor reflectances. Computation performed with at least five wallwashers.

AUTH: \qquad
DATE: 04/12/07

IZT-2S26-M5-LD@277	
Brand Name	MARK 70-10V
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Electrical Specifications

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (Watts) $(\mathbf{m i n} / \mathbf{m a x})$	Ballast Factor (min/max)	MAX THD \%	Power Factor	Lamp Current Crest Factor	B.E.F. * CFTR26W/GX24Q 1
1	26	$50 / 10$	0.10	$08 / 28$	$0.03 / 1.00$	10	0.99	1.6		
CFTR26W/GX24Q	2	26	$50 / 10$	0.18	$13 / 49$	$0.03 / 1.00$	10	0.99	1.6	2.04

Wiring Diagram

Green Terminal Must Be Grounded
Diag. 166
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Revised 02/13/2004

[^4]TYPE:
AUTH: \qquad DMM

DATE: 04/12/07

FEATURES

Triples-V $26 / 6$ is an efficient $6^{\prime \prime}$ aperture low brightness downlight designed for use with one 26 -watt triple-tube compact fluorescent lamp of the 4 -pin types made by GE, Sylvania or Philips. Triples-V 26/6 provides a shielding angle of 38°.

One housing allows interchangeable use of downlight and wallwash reflectors, permitting housings to be installed first and reflectors to be installed or changed at any time.

Triples-V 26/6 uses one 26-watt lamp providing 1800 lumens (more than a 100-watt incandescent), a 10,000-hour life, a color rendering index (CRI) of 82 , and color temperatures as warm as $2700^{\circ} \mathrm{K}$ (nearly duplicating the color qualities of incandescent).

Reflectors are available in clear, natural aluminum in three finishes: EvenTone, our standard clear finish, partially diffuse, anti-iridescent and gently luminous in appearance; OptiTone, specular and anti-iridescent, with minimum brightness and maximum efficiency; and EasyTone, diffuse and luminous. Additionally, reflectors are available in champagne gold, wheat, pewter and bronze. Wallwash $\left(120^{\circ}\right)$, corner wallwash $\left(210^{\circ}\right)$ and double wallwash $\left(2 \times 120^{\circ}\right)$ reflectors are also available.

Triples-V $26 / 6$ includes a pair of mounting bars ($3 / 4^{\prime \prime} \times 27^{\prime \prime} \mathrm{C}$ channel). Specialty bars for wood joist and T-bar installations are also available.

APPLICATIONS

Fixture is suitable for downlighting or wallwashing in nearly all architectural environments, especially those spaces where non-directional luminaires are preferred over rectangular troffers. These include offices, stores, lobbies, corridors, restrooms and public areas.

Class P electronic ballast, suitable for use in a fire rated ceiling, and approved for ten $\# 12$ wire $75^{\circ} \mathrm{C}$ branch circuit pull-through wiring. Removal of the reflector allows access to the ballast and junction box.

PRODUCT CODE
For complete product code, list basic unitand selectone item from each following box.

Basic Unit... TRPV 26/6	
Reflector Type	
Downlightno suffix	Corner Wallwash CWW
Wallwash.................... WW	Double Wallwash DWW
Voltage	
120 volt service 120	277 volt service 277
Reflector and Flange Color EvenTone Clear	Overlap Flush
	..VOL.............................. VFL
OptiTone Clear COL............................. CFL	
EasyTone Clear ECOL........................... ECFL	
Champagne Gold GOL.............................GFL	
Wheat................................ WHOL WHFL	
Pewter POLPFL	
Bronze.................................. ZOL............................. ZFL	
Other reflector finishes are available on special order.	
Standard reflector flange continues reflector flanges are available on special order. Add	h. White painted flanges and custom painted (white flange) or CCF (custom color flange).

OPTIONS

Specify by adding to the basic unit.
Dimmable 3-wire ballast; not for outdoor application- DM
Emergency battery pack operates lamp in event of
power outage. Fixture footprint increases to $10 \times 17 \frac{1}{2} 2^{\prime \prime}$
$(254 \times 444 \mathrm{~mm})$. Not available with a CWW reflector.
Not for outdoor application
$1 / 8^{\prime \prime}(3 \mathrm{~mm})$ thick clear acrylic shield,
spring-mounted within reflector ..

- PS
- For combinations of the Options above, contact factory or Edison Price Lighting representative.
- A modified fixture suitable for $2^{\prime \prime}$ maximum ceiling thickness is available on special order. Contact factory.
- A modified fixture suitable for 347 -volt service is available on special order. Contact factory.
- An install-from-below version of this fixture, suitable for installation outside North America, is available on special order. Contact factory.
- Decorative reflector rings are available on special order. Contact factory.

EDISON PRICE

41-50 22 ${ }^{\text {ND }}$ STREET, LIC NY 11101 tEL 718.685.0700 FAX 718.786.8530 www.epl.com ${ }^{\circ}$ Copyright, Edison Price Lighting 2007

Williams College
‘62 Center For Theatre \& Dance

Wililiamstown, MA

TYPE:
AUTH: \qquad
DMM
DATE: \qquad
$04 / 12 / 07$

TRIPLES-V 26/6

PHOTOMETRIC REPORT
-i11 Report No. 44968. Original Independent Testing Laboratories, Inc. (ITL) test report furnished upon request.
Luminaire \qquad recessed compact fluorescent downlight with spun aluminum reflector, specular finish Lamp \qquad Philips 26-watt triple-tube compact fluorescent, 4-pin GX24q-3 base, 1800 lumens Efficiency \qquad 62.9\%

Spacing Criteria
$0^{\circ}-1.1,90^{\circ}-1.1$

BALLAST INFORMATION

Voltage	120	277
Input Watts	28	28
Line Current (A)	.25	.11
Power Factor (\%)	>98	>98
THD (\%)	<10	<10
Min. Starting Temp* ${ }^{\circ}{ }^{\circ}$ F)	0	0

ZONAL LUMEN SUMMARY

Zone	Lumens	\% Lamp	\% Fixture
$0-30^{\circ}$	650	36.1	57.4
$0-40^{\circ}$	963	53.5	85.1
$0-60^{\circ}$	1132	62.9	100.0
$0-90^{\circ}$	1132	62.9	100.0
$90-180^{\circ}$	0	0.0	0.0
$0-180^{\circ}$	1132	62.9	100.0

LUMINANCE DATA

(Candela $/ \mathrm{m}^{2}$)		
Vertical	Average	Average

Vertical Angle	Average 0° Longitude	Average 90° Longitude
45	14858	16429
55	0	0
65	0	0
75	0	0
85	0	0

To convert cd/m ${ }^{2}$ to footlamberts, multiply by 0.2919 .

COEFFICIENTS OF UTILIZATION - ZONAL CAVITY METHOD
Effective Floor Cavity Reflectance 20\%

Ceiling Reflectance (\%)		80			70				50			30			10			0
Wall Reflectance (\%)	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	
Room Cavity Ratio																		
0	75	75	75	75	73	73	73	73	70	70	70	67	67	67	64	64	64	63
1	71	69	68	66	70	68	66	65	65	64	63	63	62	61	61	60	59	58
2	67	64	61	59	66	63	60	58	61	59	57	59	57	56	57	56	55	54
3	63	59	56	53	62	58	55	53	57	54	52	55	53	51	54	52	50	49
4	60	55	51	48	59	54	50	48	53	50	47	51	49	47	50	48	46	45
5	56	51	47	44	55	50	46	44	49	46	43	48	45	43	47	44	42	41
6	53	47	43	40	52	47	43	40	46	42	40	45	42	39	44	41	39	38
7	50	44	40	37	49	43	39	37	43	39	37	42	39	36	41	38	36	35
8	47	41	37	34	47	41	37	34	40	36	34	39	36	34	38	36	33	33
9	45	38	34	31	44	38	34	31	37	34	31	37	33	31	36	33	31	30
10	42	36	32	29	42	36	32	29	35	31	29	34	31	29	34	31	29	28

TRIPLES-V 26/6 WW

WALLWASH INFORMATION

Distance From Ceiling (Feet)	$2^{\prime} 6^{\prime \prime}$ From Wall; 2'6" O.C.		3^{\prime} From Wall; 3' O.C.		$3^{\prime} 6^{\prime \prime}$ From Wall; 3'6" O.C.	
	Below					
Fixture	Between	Fixtures	Below	Between	Below Fixture	Between Fixtures
1	7	7	4	4	3	3
2	11	10	7	6	5	4
3	17	18	9	9	6	5
4	20	20	13	14	8	9
5	18	18	14	14	10	10
6	15	15	13	13	10	10
7	12	13	11	11	9	10
8	10	10	9	9	8	8
9	9	9	8	8	7	7
10	7	7	7	7	6	6
11	6	6	6	6	6	6
12	5	5	5	5	5	5

All vertical footcandles are initial values with no contribution from ceiling or floor reflectances. Computation performed with at least five wallwashers.
\qquad
DATE: \qquad

IZT-2S26-M5-LD@277	
Brand Name	MARK 70-10V
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Electrical Specifications

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (Watts) $(\mathbf{m i n} / \mathbf{m a x})$	Ballast Factor (min/max)	MAX THD \%	Power Factor	Lamp Current Crest Factor	B.E.F. * CFTR26W/GX24Q 1
1	26	$50 / 10$	0.10	$08 / 28$	$0.03 / 1.00$	10	0.99	1.6		
CFTR26W/GX24Q	2	26	$50 / 10$	0.18	$13 / 49$	$0.03 / 1.00$	10	0.99	1.6	2.04

Wiring Diagram

Green Terminal Must Be Grounded
Diag. 166
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Revised 02/13/2004

[^5]\qquad
\qquad

STAR KITS suggestions_specifications

SUGGESTIONS

DENSITY

The appropriate density, or quantity of points in an area, is highly subjective. Most ceilings use between 1 and 6 points of light per square foot of surface area. Lower ceilings (less than 10 feet high) require more density than higher ceilings (more than 15 feet high) in order to look natural. Sparser layouts tend to look more natural, and denser layouts tend to look more glitzy.

DISTRIBUTION

Natural stars look splotchy. To best recreate the beauty of the natural sky, we urge you to vary the spacing between points. Some areas should have several stars together and other areas very few stars. Consider incorporating a dense Milky Way section into your project.

CONSTELLATIONS

You may want to have a few stars that form a constellation. Use several larger strands of fiber in the same hole to make a constellation star point that is brighter than the other star points.

INSTALLATION

Install each illuminator in an accessible location that allows each cable to reach the ceiling with 3 feet of slack. Drill a hole through the ceiling and, working from above the ceiling, insert the proper size fiber through the hole, allowing it to protrude several inches into the room. Secure the fiber in place with adhesive. Allow the adhesive to dry. Clip the fibers to approximately $3 / 8$ from the ceiling and apply a light coat of latex paint over the ceiling and fibers (optional). After the paint has dried, clip the fibers to $1 / 8$, or to $1 / 4$ if you prefer to allow for a future repainting and re-clipping.

Plan View:

Technical Remarks:

Locate llumminator(s) in an accessible, ventilated area. Route cables to locations of star points. Coil excess cable if needed. Optional shooting star is shown.

Section View:

Installation Sequence:

Paint ceiling, drill holes, insert fibers, adhere fibers in PLACE, Lightiy repaint Ceiling, trim fibers to $1 / 8^{\prime \prime}$. LEAVING AN ADDITIONAL $1 / 8^{\prime \prime}$ would allow for future REPAINTING OF THE CEILING.
\qquad
DATE: \qquad

STAR KIT B

$$
\xrightarrow[\rightarrow]{\rightarrow}
$$

Description:

Medium Star Kit with shooting star

Specifications:
 \section*{Intensity:}

500 TOTAL POINTS
Max Lit Length:
9 Cables of Star 34/50, 10 feet long;
200 ShOOTING STAR CABLES, 10 FEET LONG
Mounting: DrILL HOLE, INSERT FIBER, SECURE WITH EPOXY OR ADHESIVE
Illuminator: FS1L-SPW/NC-120
Technical Remarks: SPARKLE WHEEL INCLUDED

	STAR KIT C
$\xrightarrow{\rightarrow} \xrightarrow{\rightarrow}$	Description: Large Star Kit with 2 shooting stars
	Specifications: Intensity: 800 TOTAL POINTS Max Lit Length: 18 CABLES OF STAR 34/50, 20 FEET LONG; 200 SHOOTIN STARS, 20 FEET LONG Mounting: DRILL HOLE, INSERT FIBER, SECURE WITH EPOXY OR ADESIVE Illuminator: FSLL-SPW/NC-120 Technical Remarks: SPARKLE WHEEL INCLUDED

www.fiberstars.com
81

Williams College ‘62 Center For 'Theatre \& Dance

AUTH: \qquad DMM

DATE: 04/12/07

FS1L ILLUMINATOR description_ordering guide_specifications

FS1L illuminator

Description:

The FS1L is a small, fanless light source primarily used for end emitting points of light for animated signs and special effects. It uses a 71 watt quartz halogen lamp with 3200°
Kelvin color temperature and is U.L. listed for dry locations.
The FS1L has a high fiber capacity of up to 3200 of 0.75 mm fibers.

\qquad

A ADVANCE

Electrical Specifications

VEZ-1Q18-M2-BS	
Brand Name	MARK 10 POWERLINE
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamps	Rated Lamp Watts	Min. Start Temp ($\mathrm{F} / \mathrm{C})$	Input Current (Amps)	Input Power (Watts) $(\boldsymbol{m i n} / \boldsymbol{m a x})$	Ballast Factor (min/max)	MAX THD \%	Power Factor	Lamp Current Crest Factor	B.E.F.
CFQ18W/G24Q	1	18	$50 / 10$	0.07	$07 / 22$	$0.05 / 1.00$	10	0.99	1.6	4.55
${ }^{\text {C CFTR18W/GX24Q }}$	1	18	$50 / 10$	0.08	$07 / 22$	$0.05 / 1.00$	10	0.99	1.6	4.55

Diag. 134
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	0	
Red/White	0	

Revised 08/17/2006

TYPE:
AUTH: \qquad DMM

DATE: 04/12/07
\qquad
\qquad

Professional directional projector for use with an 50W MR16 Halogen lamp.

Details

Features

- Die-cast aluminum joints, fitted with graduated ring for tool-less aim locking
- Painted aluminum body with die-cast titanium-colored painted supports
- Mounts to wall, ceiling or track
- 359° horizontal rotation and 90° vertical tilt, with directional locking $\left(90^{\circ}\right.$ locks in position)
- 120V electronic transformer separate from the optical assembly to optimize heat dispertion and ensure the lamp maintains a constant operating temperature
- Available linear spread and softening lenses
- Accepts chromatic and UV stop filters

Lens

- Borosilicate safety glass

Lamp

- 50W max. MR16 Halogen lamp

Transformer

- Supplied with 120 V primary, for 277 V consult factory
- Thermal protection that meets UL and NEC requirements

Accessories (1 Max. per fixture)

- Framing projector
- Adjustable barn doors
- UV stop filter
- Chromatic filters in red, green, blue, yellow and magenta
- Consult factory for multiple accessories

Labels

- UL listed

Williams College
 ‘62 Center For Theatre \& Dance

type: D-9
AUTH: \qquad
DATE: 04/12/07

Ordering Information

TRIM	CAT. \#	MOUNT	LAMP	COLOR*
FOHO PRO MR16 Projector	US1T0687D1	Wall/Ceiling	50W MR16	White
	US1T1376D1			Black
	US1T0686D1			Aluminum
	US1T0691D1	Two Circuit Track		White
	US1T1377D1			Black
	US1T0690D1			Aluminum

Adjustable Barn Doors

Accessories

DESCRIPTION	COLOR	CAT. \#
Framing Projector	Aluminum	US1T0742
Adjustable Barn Doors	Black	US1T0741
Chromatic Dichroic Filters Ø 1.38" for use with Framing Projector	Red	US49891
	Green	US49892
	Blue	US49896
	Yellow	US49897
	Magenta	US49898
Chromatic Dichroic Filters Ø2"	Red	US49881
	Green	US49882
	Blue	US49886
	Yellow	US49887
	Magenta	US49959
UV Stop Filter	Clear	US49880
Corrective Fllters	Light Peach	US1T1750
	Medium Peach	US1T1751
	Dark Peach	US1T1752
	Light Pink	US1T1741
	Medium Pink	US1T1742
	Dark Pink	US1T1743
	Light Blue	US1T1744
	Medium Blue	US1T1745
	Dark Blue	US1T1746
	Light Yellow	US1T1747
	Medium Yellow	US1T1748
	Dark Yellow	US1T1749

тype: D-9
AUTH: \qquad DMM

DATE: 04/12/07

20MR16Q/40\% FL (BAB)

 CBCP: 700 cd

50MR16Q/25 $/$ NFL (EXZ)
CBCP: 3200 cd
Avg. Rated Life: 3500 hrs.

35MR16Q/8/NSP (FRB) CBCP: 11,000 cd

50MR16Q/40/FL (EXN) CBCP: 2000 cd
Avg. Rated Life: 3500 hrs.

35MR16Q/35\%/FL (FMW)
CBCP: 1400 cd
Avg. Rated Life: 3000 hrs .

* $\mathrm{fc}=$ footcandles
** diameter in feet
$\mathrm{CBCP}=$ center beam candle power
cd= candella

Williams College
‘62 Center For 'Theatre \& Dance
type: D-9
AUTH: \qquad
DATE: 04/12/07

FEATURES

Triples-V $18 / 6$ is an efficient $6^{\prime \prime}$ aperture low brightness downlight designed for use with one 18-watt triple-tube compact fluorescent lamp of the 4 -pin types made by GE, Sylvania or Philips. Triples-V 18/6 provides a shielding angle of 40°.

One housing allows interchangeable use of downlight and wallwash reflectors, permitting housings to be installed first and reflectors to be installed or changed at any time.

Triples-V 18/6 uses one 18-watt lamp providing 1200 lumens (more than a 75 -watt incandescent), a 10,000-hour life, a color rendering index (CRI) of 82 , and color temperatures as warm as $2700^{\circ} \mathrm{K}$ (nearly duplicating the color qualities of incandescent).

Reflectors are available in clear, natural aluminum in three finishes: EvenTone, our standard clear finish, partially diffuse, anti-iridescent and gently luminous in appearance; OptiTone, specular and anti-iridescent, with minimum brightness and maximum efficiency; and EasyTone, diffuse and luminous. Additionally, reflectors are available in champagne gold, wheat, pewter and bronze. Wallwash $\left(120^{\circ}\right)$, corner wallwash $\left(210^{\circ}\right)$ and double wallwash $\left(2 \times 120^{\circ}\right)$ reflectors are also available.

Triples-V $18 / 6$ includes a pair of mounting bars $\left(3 / 4^{\prime \prime} \times 27^{\prime \prime} \mathrm{C}\right.$ channel) Specialty bars for wood joist and T-bar installations are also available.

APPLICATIONS

Fixture is suitable for downlighting or wallwashing in nearly all architectural environments, especially those spaces where non-directional luminaires are preferred over rectangular troffers. These include offices, stores, lobbies,

is prewired with high power factor Class P electronic ballast, suitable for use in a fire rated ceiling and approved for ten \#12 wire $75^{\circ} \mathrm{C}$ branch circuit pull-through wiring. Removal of the reflector allows access to the ballast and junction box.

PRODUCT CODE
For complete product code, list basic unit and select one item from each following box.

Basic Unit ... TRPV 18/6	
Reflector Type	
Downlightno suffix	Corner Wallwash CWW
Wallwash.................... WW	Double Wallwash DWW
Voltage	
120 volt service 120	277 volt service 277
Reflector and Flange Color Overlap Flush	
EvenTone Clear.........................VOL.............................. VFL	
OptiTone Clear COL............................. CFL	
EasyTone Clear ECOL........................... ECFL	
Champagne GoldGOL............................GFL	
Wheat................................ WHOL WHFL	
Pewter POLPPL	
Bronze................................... ZOL	
Other reflector finishes are available on special order.	
Standard reflector flange continues reflector finish. White painted flanges and custom painted flanges are available on special order. Add WF (white flange) or CCF (custom color flange).	

OPTIONS

Specify by adding to the basic unit.
Dimmable 3-wire ballast; not for outdoor application- DM
Emergency battery pack operates lamp in event of power outage. Fixture footprint increases to $10 \times 163 / 4$ " $(254 \times 425 \mathrm{~mm})$. Not available with a CWW reflector. Not for outdoor application spring-mounted within reflector
-For combinations of the Options above, contact factory or Edison Price Lighting representative.

- A modified fixture suitable for $2^{\prime \prime}$ maximum ceiling thickness is available on special order. Contact factory.
A modified fixture suitable for 347 -volt service is available on special order. Contact factory
- An install-from-below version of this fixture, suitable for installation outside North America, is available on special order. Contact factory.
Decorative reflector rings are available on special order. Contact factory.

EDISONPRICE

41-50 22 ${ }^{\text {ND }}$ STREET, LIC NY 11101 tel 718.685.0700 fax 718.786.8530 www.epl.com ${ }^{\text {a }}$ Copyright, Edison Price Llighting 2007

DATE: \qquad

PHOTOMETRIC REPORT

1il Report No. 44758. Original Independent Testing Laboratories, Inc. (ITL) test report furnished upon request.
Luminaire \qquad recessed compact fluorescent downlight with spun aluminum reflector, specular finish Lamp. \qquad Philips 18 -watt triple-tube compact fluorescent, 4-pin GX24q-2 base, 1200 lumens Efficiency \qquad 64.3\%

Spacing Criteria $0^{\circ}-1.2,90^{\circ}-1.1$

BALLAST INFORMATION

Voltage	120	277
Input Watts	22	22
Line Current (A)	.19	.08
Power Factor (\%)	>98	>98
THD (\%)	<10	<10
Min. Starting Temp* (${ }^{\circ} \mathrm{F}$)	0	0

*Consult lamp manufacturers for specific temperatures.
ZONAL LUMEN SUMMARY

Zone	Lumens	\% Lamp	\% Fixture
$0-30^{\circ}$	436	36.3	56.5
$0-40^{\circ}$	661	55.1	85.7
$0-60^{\circ}$	772	64.3	100.0
$0-90^{\circ}$	772	64.3	100.0
$90-180^{\circ}$	0	0.0	0.0
$0-180^{\circ}$	772	64.3	100.0

CANDLEPOWER DISTRIBUTION (Candela)
CANDLEPOWER DISTRIBUTION (Candela)

Vertical Angle	0.0	45.0	90.0
	557	557	557
5	627	589	561
15	575	580	553
25	489	456	482
35	385	354	349
45	143	158	162
55	1	0	0
65	0	0	0
75	0	0	0
85	0	0	0
90	0	0	0

LUMINANCE DATA
(Candela/m ${ }^{2}$)

Vertical Angle	Average 0° Longitude	Average 90° Longitude
45	10215	11572
55	88	0
65	0	0
75	0	0
85	0	0

To convert cd/m ${ }^{2}$ to footlamberts, multiply by 0.2919 .

COEFFICIENTS OF UTILIZATION - ZONAL CAVITY METHOD
Effective Floor Cavity Reflectance 20\%

Ceiling Reflectance (\%)		80			70				50			30			10			0
Wall Reflectance (\%)	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	
Room Cavity Ratio																		
0	76	76	76	76	75	75	75	75	71	71	71	68	68	68	65	65	65	64
1	73	71	69	67	71	69	68	66	67	65	64	64	63	62	62	61	61	59
2	69	65	62	60	67	64	62	59	62	60	58	60	58	57	58	57	56	55
3	65	60	57	54	63	59	56	54	58	55	53	56	54	52	55	53	51	50
4	61	56	52	49	60	55	51	49	54	51	48	52	50	47	51	49	47	46
5	57	52	48	45	56	51	47	44	50	46	44	49	46	44	48	45	43	42
6	54	48	44	41	53	47	43	41	46	43	40	45	42	40	45	42	40	39
7	51	45	40	37	50	44	40	37	43	40	37	42	39	37	42	39	37	36
8	48	42	37	34	47	41	37	34	40	37	34	40	36	34	39	36	34	33
9	46	39	35	32	45	38	35	32	38	34	32	37	34	32	37	34	31	31
10	43	36	32	30	42	36	32	30	35	32	29	35	32	29	34	31	29	28

TRIPLES-V 18/6 WW

WALLWASH INFORMATION

| $\begin{array}{c}\text { Distance } \\ \text { From } \\ \text { Ceiling } \\ \text { (Feet) }\end{array}$ | $\begin{array}{c}\text { 2'6"From Wall; 2'6" O.C. }\end{array}$ | 3' From Wall; 3' O.C. | |
| :---: | :---: | :---: | :---: | :---: |
| | Fixture | | |\(\left.\quad \begin{array}{c}Between

Fixtures\end{array} \quad \begin{array}{c}Below

Fixture\end{array}\right) ~\)| Between |
| :---: |
| Fixtures |$|$| 1 | 5 | 5 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 8 | 7 | 5 | 4 |
| 3 | 13 | 13 | 7 | 6 |
| 4 | 15 | 15 | 10 | 10 |
| 5 | 13 | 13 | 10 | 10 |
| 6 | 10 | 11 | 9 | 9 |
| 7 | 9 | 8 | 8 | 8 |
| 8 | 7 | 7 | 6 | 6 |
| 9 | 6 | 6 | 5 | 5 |

All vertical footcandles are initial values with no contribution from ceiling or floor reflectances. Computation performed with at least five wallwashers.

Williams College
‘62 Center For Theatre \& Dance
AUTH: \qquad
DATE: \qquad

Page 1 of caalv calv caalclv 4 1/2" Aperture, M R16 Reflector Trim

Ceiling Cutout: 5 1/16" (129 mm) Dia.

Reflector Trim		Frame-In Kit		
C4M RD CLW	Specular Clear,	Non-IC 120V/277V	Non-IC AirSeal ${ }^{8} 120 \mathrm{~V} / 277 \mathrm{~V}$	IC AirSeal ${ }^{8} 120 \mathrm{~V}$
C4M RD	Specular Clear, Polished Flange Add suffix. See options for other finishes.	$\begin{array}{ll} \text { C4LVMU } & \text { Magnetic 120/277V } \\ \text { C4LVE1 } & \text { Electronic 120V } \\ \text { C4LVE2 } & \text { Electronic 277V } \\ \text { 42-75W } & \\ \text { MR16(12V) } & \end{array}$	C4ALVMU M agnetic 120/277V C4ALVE1 Electronic 120V $42-75 \mathrm{~W}$ M R16(12V)	C4AICLVM 1 M agnetic 120V C4AICLVE1 Electronic 120V 20-50W M R16(12V)
			Remodel Frame-In Kit	
			Non-IC 120V	
			C4LVEIRM 50W Max. M R16 (12V) See C4LVE1RM	ation sheet for more information

Features

1. Reflector: 16 ga. aluminum, 50° visual cutoff to lamp and lamp image. Available with painted white or polished flange. Interchangeable with other Evolution 4 1/2" low voltage trims.
2. Lamp Support: Die-formed aluminum with spring tension clips to hold lamp and lens allow ing fast snap-in, snap-out relamping from below. M atte black finish. Cover glass may be replaced with a color filter or lens accessory.
3. Cover Glass: High temperature, tempered glass. Perimeter frost.
4. Socket Harness: Porcelain bi-pin socket. Pre-wired with No. 18 Teflon ${ }^{8}$ leads.
5. Pow er Harness: Provides power to transformer.
6. Frame-In Kit: Compatible Frame-In Kits are listed above. Non-IC and Non-IC AirSeal ${ }^{8}$ - Insulation must be kept 3" away from fixture sides and wiring compartments, and must not be placed above fixture in a manner which will entrap heat.
IC-AirSeal ${ }^{6}$ - Fixture may be in direct contact with insulation.

Options \& Accessories

Cone Finishes ${ }^{1}$

Clear: CL Gold: GD White: WH

Black: BK
CCD
Comfort Clear Diffuse: CCD
Champagne Bronze: CCZ
Specify desired flange: W White; P Polished
Evolution 4" Trims with Non-IC and AIC Frames
C4M RD 1 Secondary Color Lens or 1 M ixing Color Lens or 1 Specialty Filter

Options \& Accessories (cont.)

Labels
UL Listed (suitable for damp locations), I.B.E.W.

Teflon ${ }^{8}$ is a registered trademark of E.I. DuPont
US Patent No. 5,957,573. Other US and Foreign Patents Pending.

J ob Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte company www.lightolier.com 631 Airport Road, Fall River, M A 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • F0406
\qquad
DATE: \qquad

SPACINGRATIO $=0.6$
CERTIEDTEST REPORTNO. OB81FR

4 1/2" Aperture, M R16 Reflector Trim
SPACINGRATIO $=0.5$

Lightolier a Genlyte company (508) 679-813 WW. lightolier.com (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • F0406

Type:

Conversion Factors

20W to 50W MR16FL: Clear, C.U.x 100: Diffuse / Gold, C.U.x 0.95 .

Williams College

TYPE:	$D-12$
AUTH:	DMM
DATE:	04/12/07

Lamps

- $15 \times$ white DMX LEDs 1.2 W $3 \times$ colour DMX LEDs 1.2 W (blue, green, red, amber, or RGB on request) 21.6 W total output. Also available in 42W TC-TEL compact fluorescent, 70W HSE-I high pressure sodium and 80W HME high pressure mercury.

Materials/Finish

Head and body: powder coated die-cast LM6 aluminium, anthracite (close to RAL 7024) Top cone: opal polycarbonate Diffuser: clear polycarbonate with internal sand-blasted band

Installation/Mounting

Flange mounting plate or support for root mounting. LED module and power supply can easily be retrofitted into an existing bollard.

Standards

Designed and manufactured to comply with EN60598
C Class II Electrical $850^{\circ} \mathrm{C}$ fire retardant IK10 impact resistance

『 C

Specification

To specify state: Decorative aluminium bollard with clear diffuser including a sand blasted band and with small luminous cone. Complete with $18 \times 1.2 \mathrm{~W}$ DMX LEDs. Parapet/flange/root mounted. As Thorn Promenade LED.

Ordering Guide

Lamps to be ordered separately (except LED versions)

Description	Ilcos Code	Socket	Weight (Kg)	SAP Code
Parapet mounted				
PROMENADE BOL LED WHI/AMB 325MM MPL ANT	-	-	8	96231685
PROMENADE BOL LED WHI/RED 325MM MPL ANT	-	-	8	96231684
PROMENADE BOL LED WHI/GRN 325MM MPL ANT	-	-	8	96231683
PROMENADE BOL LED WHI/BLU 325MM MPL ANT	-	-	8	96231682

Promenade LED

Project Example:

Promenade LED only
Pathway for pedestrians
Pathway width: 1.5 m bollard installed at 15 cm from the pathway Single sided Spacing 10 m Emin: 0.6 lx Eav: 2.2 lx
Emin/Eav: 0.25
Lighting class: S6 according to EN13201

Nite Stor ${ }^{\text {m }}$

Features

- Tamper proof design.
- Raintight optical compartment.
- Enclosed wireway mounting knuckle.
- Clear, tempered glass lens, factory sealed.
- Machined aluminum construction with stainless steel hardware.
- \& (5) Listed with MR16 lamps to 50 watts.
- For use with remote transformers, see pages 92, 94, and 97.

Available in Bross, see page 90.

Nite Star ${ }^{T M}$ is a fully machined aluminum MR16 lighting instrument. The Nite Star is fully enclosed and waterproof because of its unique sleeved design. Nite Star is finished in a durable, luxurious, polyester powder coating. All hardware is stainless steel. The Nite Star, along with the wide choice of MR16 lamps and optical accessories, gives the lighting designer an economical, yet highly architectural lighting fixture for the most discriminating designs.

\qquad
DATE: 04/12/07

High performance optical system designed to accommodate a variety of T8 lamping options.
Extruded aluminum housing available in Suspended and Wall Mount versions
Three lighting distributions to choose from: Direct/Indirect, Direct, or Indirect.
Modular components allow for creative pattern and space frame design.
Factory pre-wired with quick-connect plugs for fast, easy installation.

Order Number Guide

866	1	T20						E	ــ
Series TLS 6.5"	Type Direct		Lower Optics A - Curved Acrylic Lens C - Curved Baffle	Upper Optics E-None	Length 04-4ft 2in 08-8ft 2in 12-12ft 2in	Wiring Options 1-1cct 2-2cct 3-1cct w/ Emergency cct 4-2cct w/ Emergency cct 5-1 cct w/ Battery Pack 6-2cct w/ Battery Pack 7-1cct w/ Dimming* 8-1 cct w/Thru Wire 9-2cct w/Thru Wire	Voltage 1-120V 2-277V 3-347V* X-Custom * Consult factory for availability	Ballast Electronic	Finish W - Standard White C - Factory Color* X - Custom Color *See factory color chart

Cross Section

Weight $4.4 \mathrm{lb} / \mathrm{ft}$

Curved Baffle

Curved Acrylic

Modules
Linear runs are made by combining $4 f t, 8 f t$ and 12 ft modules

$12^{\prime} 2^{\prime \prime}$

Ends / Intersections

ENDCAP 8661EBN_

INLINE JOINT 8661JNN_N

"L" INTERSECTION 8661MLL_

"T"INTERSECTION 8661MLT_

"X" intersection 8661MLX

AUTH: \qquad
DATE: 04/12/07

Specifications

Housing

6063 T5 extruded aluminum.

Optical System
Constructed of highly reflective 24 gauge metal. Louvers are semi-specular 13/16" deep and 2 " on center.

Endcaps

Aluminum endcaps.
Joints \& Intersections
All joints shall be accomplished using
QuickLock ${ }^{\text {TM }}$ joining system. Optional
intersections, in "L" "T" or "X"
configurations, shall be mitered
aluminum extrusion.

Mounting

Aircraft cable gripper is tamper-resistant and provides infinite vertical adjustment capability. Aircraft cable, crimp and cable gripper independently tested to meet stringent safety requirements.

Electrical

All luminaires shall be factory pre-wired to
section ends with quick-connect plugs.

Ballast

Electronic.

Approvals:
Certified to UL \& CSA standards.

Finish

High-quality powder coat, factory applied to meet AAMA 2603-98. Available in Ledalite Standard White (textured matte finish), a selection of optional factory colors (see factory color chart), or custom colors. Consult factory for details.

Due to continuing product improvements, Ledalite reserves the right to change specifications without notice.

Photometry
Optical Setting AE:
Curved Acrylic Lens

CANDELA DISTRIBUTION						
Vert. Angle	\mathbf{y}	$\mathbf{y 2 . 5}$	$\mathbf{4 5}$	$\mathbf{6 7 . 5}$	$\mathbf{9 0}$	
$\mathbf{0}$	1282	1282	1282	1282	1282	
$\mathbf{5}$	1276	1274	1276	1276	1278	122
$\mathbf{1 5}$	1230	1225	1230	1230	1238	347
$\mathbf{2 5}$	1134	1127	1146	1153	1168	528
$\mathbf{3 5}$	993	985	1017	1035	1051	635
$\mathbf{4 5}$	800	795	845	858	874	642
$\mathbf{5 5}$	557	562	628	639	655	544
$\mathbf{6 5}$	298	332	406	418	437	380
$\mathbf{7 5}$	115	161	235	247	260	223
$\mathbf{8 5}$	17	63	119	132	144	111
$\mathbf{9 0}$	0	35	81	96	107	
$\mathbf{9 5}$	0	0	0	0	0	0
$\mathbf{1 0 5}$	0	0	0	0	0	0
$\mathbf{1 1 5}$	0	0	0	0	0	0
$\mathbf{1 2 5}$	0	0	0	0	0	0
$\mathbf{1 3 5}$	0	0	0	0	0	0
$\mathbf{1 4 5}$	0	0	0	0	0	0
$\mathbf{1 5 5}$	0	0	0	0	0	0
$\mathbf{1 6 5}$	0	0	0	0	0	0
$\mathbf{1 7 5}$	0	0	0	0	0	0
$\mathbf{1 8 0}$	0	0	0	0	0	

Report\#
2101084
Efficiency 61.0\%

AVERAGE LUMINANCE ($\mathrm{cd} / \mathrm{m}^{2}$)			
Vert. angle	Horizontal angle		
	0	45	90
55	7256	6532	6288
65	5269	5205	5030
75	3320	4088	3883
85	1457	3378	3200

COEFFICIENTS OF UTILIZATION (\%)											
Ceiling Wall RCR	80				70			50			
	70	50	30	10	70	50		50	30	10	0
0	72	72	72	72	70	70	70	67	67	67	60
1	66	63	60	58	64	61		59	57	55	50
2	60	55	51	47	58	54		51	48	45	42
3	55	48	43	39	53	47	43	45	41	38	36
4	50	43	37	33	49	42	37	40	36	33	30
5	46	38	33	29	45	38	32	36	32	28	26
6	42	34	29	25	41	34	29	33	28	25	23
7	39	31	26	22	38	31	26	30	25	22	20
8	37	28	23	20	36	28		27	23	20	18
9	34	26	21	18	33	26		25	21	18	16
10		24				24		23	19	16	15
Based on a floor reflectance of 0.2											

Optical Setting CE:
 Curved Baffle

CANDELA DISTRIBUTION						
Vert. Angle	Horizontal Angle					
$\mathbf{0}$	$\mathbf{2 2 . 5}$	$\mathbf{4 5}$	$\mathbf{6 7 . 5}$	$\mathbf{9 0}$	Zonal Lumens	
$\mathbf{0}$	1305	1305	1305	1305	$\mathbf{1 3 0 5}$	
$\mathbf{5}$	1292	1291	1299	1304	1307	126
$\mathbf{1 5}$	1200	1205	1244	1273	1293	351
$\mathbf{2 5}$	1052	1071	1140	1202	1245	526
$\mathbf{3 5}$	878	908	1004	1099	1164	631
$\mathbf{4 5}$	676	717	843	961	1042	652
$\mathbf{5 5}$	458	510	664	775	850	581
$\mathbf{6 5}$	245	306	465	537	584	427
$\mathbf{7 5}$	108	143	274	282	299	241
$\mathbf{8 5}$	32	55	115	86	52	88
$\mathbf{9 0}$	0	31	74	57	6	
$\mathbf{9 5}$	0	0	0	0	0	0
$\mathbf{1 0 5}$	0	0	0	0	0	0
$\mathbf{1 1 5}$	0	0	0	0	0	0
$\mathbf{1 2 5}$	0	0	0	0	0	0
$\mathbf{1 3 5}$	0	0	0	0	0	0
$\mathbf{1 4 5}$	0	0	0	0	0	0
$\mathbf{1 5 5}$	0	0	0	0	0	0
$\mathbf{1 6 5}$	0	0	0	0	0	0
$\mathbf{1 7 5}$	0	0	0	0	0	0
$\mathbf{1 8 0}$	0	0	0	0	0	

COEFFICIENTS OF UTILIZATION (\%)											
$\begin{aligned} & \text { Ceiling } \\ & \text { Wall } \\ & \text { RCR } \end{aligned}$	80				70			50			
	70	50	30	10	70	50	30	50	30	10	0
0	74	74	74	74	72	72	72	69	69	69	62
1	67	64	62	59	66	63	61	60	58	56	52
2	61	56	52	48	60	55	51	53	49	47	43
3	56	49	44	40	54	48	43	46	42	39	36
4	51	44	38	34	50	43	38	41	37	33	31
5	47	39	33	29	46	38	33	37	32	29	27
6	43	35	29	25	42	34	29	33	29	25	23
7	40	32	26	22	39	31	26	30	25	22	20
8	37	29	24	20	36	28	23	28	23	20	18
9	35	26	21	18	34	26	21	25	21	18	16
10	33	24	19	16	32	24		23	19	16	15
Based on a floor reflectance of 0.2											

Note : IES photometric files available for download at www.ledalite.com
\qquad
DATE: \qquad $04 / 12 / 07$

VOP-3P32-SC	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	277
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F32T8	1	32	$0 /-18$	0.14	37	1.08	20	0.94	1.7	2.92
*F32T8	2	32	$0 /-18$	0.23	62	0.94	10	0.98	1.7	1.52
F32T8	3	32	$0 /-18$	0.30	82	0.88	10	0.99	1.7	1.07

Standard Lead Length (inches)

	in.	cm.
Black	25 L	63.5
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow	0	0
Gray	0	0
Violet	0	0

	in.	cm.
Yellow/Blue	0	0
Blue/White	0	0
Brown	0	0
Orange	0	0
Orange/Black	0	0
Black/White	0	0
Red/White	0	0

The wiring diagram that appears above is
for the lamp type denoted by the asterisk (*)

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.7 "	1.18 "	8.90 "
$91 / 2$	$17 / 10$	19/50	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Electrical Specifications

High performance optical system designed to accommodate a variety of T8 lamping options.
Extruded aluminum housing available in Suspended and Wall Mount versions
Three lighting distributions to choose from: Direct/Indirect, Direct, or Indirect.
Modular components allow for creative pattern and space frame design.
Factory pre-wired with quick-connect plugs for fast, easy installation.

Order Number Guide

866	1	T20						E	ــ
Series TLS 6.5"	Type Direct		Lower Optics A - Curved Acrylic Lens C - Curved Baffle	Upper Optics E-None	Length 04-4ft 2in 08-8ft 2in 12-12ft 2in	Wiring Options 1-1cct 2-2cct 3-1cct w/ Emergency cct 4-2cct w/ Emergency cct 5-1 cct w/ Battery Pack 6-2cct w/ Battery Pack 7-1cct w/ Dimming* 8-1 cct w/Thru Wire 9-2cct w/Thru Wire	Voltage 1-120V 2-277V 3-347V* X-Custom * Consult factory for availability	Ballast Electronic	Finish W - Standard White C - Factory Color* X - Custom Color *See factory color chart

Cross Section

Weight $4.4 \mathrm{lb} / \mathrm{ft}$

Curved Baffle

Curved Acrylic

Modules
Linear runs are made by combining $4 f t, 8 f t$ and 12 ft modules

$12^{\prime} 2^{\prime \prime}$

Ends / Intersections

ENDCAP 8661EBN_

INLINE JOINT 8661JNN_N

L" INTERSECTION 8661MLL_

"T"INTERSECTION 8661MLT__

"X" Intersection 8661MLX

AUTH: \qquad
DATE: 04/12/07

Specifications

Housing

6063 T5 extruded aluminum.

Optical System
Constructed of highly reflective 24 gauge metal. Louvers are semi-specular 13/16" deep and 2 " on center.

Endcaps

Aluminum endcaps.
Joints \& Intersections
All joints shall be accomplished using
QuickLock ${ }^{\text {TM }}$ joining system. Optional
intersections, in "L" "T" or "X"
configurations, shall be mitered
aluminum extrusion.

Mounting

Aircraft cable gripper is tamper-resistant and provides infinite vertical adjustment capability. Aircraft cable, crimp and cable gripper independently tested to meet stringent safety requirements.

Electrical

All luminaires shall be factory pre-wired to
section ends with quick-connect plugs.

Ballast

Electronic.

Approvals:
Certified to UL \& CSA standards.

Finish

High-quality powder coat, factory applied to meet AAMA 2603-98. Available in Ledalite Standard White (textured matte finish), a selection of optional factory colors (see factory color chart), or custom colors. Consult factory for details.

Due to continuing product improvements, Ledalite reserves the right to change specifications without notice.

Photometry
Optical Setting AE:
Curved Acrylic Lens

CANDELA DISTRIBUTION						
Vert. Angle	\mathbf{y}	$\mathbf{y 2 . 5}$	$\mathbf{4 5}$	$\mathbf{6 7 . 5}$	$\mathbf{9 0}$	
$\mathbf{0}$	1282	1282	1282	1282	1282	
$\mathbf{5}$	1276	1274	1276	1276	1278	122
$\mathbf{1 5}$	1230	1225	1230	1230	1238	347
$\mathbf{2 5}$	1134	1127	1146	1153	1168	528
$\mathbf{3 5}$	993	985	1017	1035	1051	635
$\mathbf{4 5}$	800	795	845	858	874	642
$\mathbf{5 5}$	557	562	628	639	655	544
$\mathbf{6 5}$	298	332	406	418	437	380
$\mathbf{7 5}$	115	161	235	247	260	223
$\mathbf{8 5}$	17	63	119	132	144	111
$\mathbf{9 0}$	0	35	81	96	107	
$\mathbf{9 5}$	0	0	0	0	0	0
$\mathbf{1 0 5}$	0	0	0	0	0	0
$\mathbf{1 1 5}$	0	0	0	0	0	0
$\mathbf{1 2 5}$	0	0	0	0	0	0
$\mathbf{1 3 5}$	0	0	0	0	0	0
$\mathbf{1 4 5}$	0	0	0	0	0	0
$\mathbf{1 5 5}$	0	0	0	0	0	0
$\mathbf{1 6 5}$	0	0	0	0	0	0
$\mathbf{1 7 5}$	0	0	0	0	0	0
$\mathbf{1 8 0}$	0	0	0	0	0	

Report\#
2101084
Efficiency 61.0\%

AVERAGE LUMINANCE ($\mathrm{cd} / \mathrm{m}^{2}$)			
Vert. angle	Horizontal angle		
	0	45	90
55	7256	6532	6288
65	5269	5205	5030
75	3320	4088	3883
85	1457	3378	3200

COEFFICIENTS OF UTILIZATION (\%)											
$\begin{aligned} & \text { Ceiling } \\ & \text { Wall } \\ & \text { RCR } \end{aligned}$	80				70			50			
		50	30			50	30	50	30	10	0
0	72	72	72		70	70		67	67	67	60
1	66	63	60	58	64	61	59	59	57	55	50
2	60	55	51		58	54	50	51	48	45	42
3	55	48	43		53	47	43	45	41	38	36
4	50	43	37		49	42	37	40	36	33	30
5	46	38	33	29	45	38	32	36	32	28	26
6	42	34	29	25	41	34	29	33	28	25	23
7		31	26	22	38	31	26	30	25	22	20
8		28	23	20	36	28	23	27	23	20	18
9	34	26	21	18	33	26	21	25	21	18	16
10	32	24	19	16	31	24	19	23	19	16	15
Based on a floor reflectance of 0.2											

Optical Setting CE:
 Curved Baffle

CANDELA DISTRIBUTION						
Vert. Angle	$\mathbf{y y y y y}$	Horizontal Angle				
$\mathbf{0}$	$\mathbf{2 2 . 5}$	$\mathbf{4 5}$	$\mathbf{6 7 . 5}$	$\mathbf{9 0}$		
$\mathbf{0}$	1305	1305	1305	1305	1305	
$\mathbf{5}$	1292	1291	1299	1304	1307	126
$\mathbf{1 5}$	1200	1205	1244	1273	1293	351
$\mathbf{2 5}$	1052	1071	1140	1202	1245	526
$\mathbf{3 5}$	878	908	1004	1099	1164	631
$\mathbf{4 5}$	676	717	843	961	1042	652
$\mathbf{5 5}$	458	510	664	775	850	581
$\mathbf{6 5}$	245	306	465	537	584	427
$\mathbf{7 5}$	108	143	274	282	299	241
$\mathbf{8 5}$	32	55	115	86	52	88
$\mathbf{9 0}$	0	31	74	57	6	
$\mathbf{9 5}$	0	0	0	0	0	0
$\mathbf{1 0 5}$	0	0	0	0	0	0
$\mathbf{1 1 5}$	0	0	0	0	0	0
$\mathbf{1 2 5}$	0	0	0	0	0	0
$\mathbf{1 3 5}$	0	0	0	0	0	0
$\mathbf{1 4 5}$	0	0	0	0	0	0
$\mathbf{1 5 5}$	0	0	0	0	0	0
$\mathbf{1 6 5}$	0	0	0	0	0	0
$\mathbf{1 7 5}$	0	0	0	0	0	0
$\mathbf{1 8 0}$	0	0	0	0	0	

Note : IES photometric files available for download at www.ledalite.com

TYPE:
AUTH: \qquad
DATE: \qquad $04 / 12 / 07$

VOP-3P32-SC	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	277
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F32T8	1	32	$0 /-18$	0.14	37	1.08	20	0.94	1.7	2.92
*F32T8	2	32	$0 /-18$	0.23	62	0.94	10	0.98	1.7	1.52
F32T8	3	32	$0 /-18$	0.30	82	0.88	10	0.99	1.7	1.07

Standard Lead Length (inches)

	in.	cm.
Black	25 L	63.5
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow	0	0
Gray	0	0
Violet	0	0

	in.	cm.
Yellow/Blue	0	0
Blue/White	0	0
Brown	0	0
Orange	0	0
Orange/Black	0	0
Black/White	0	0
Red/White	0	0

The wiring diagram that appears above is
for the lamp type denoted by the asterisk (*)

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.7 "	1.18 "	8.90 "
$91 / 2$	$17 / 10$	19/50	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Electrical Specifications

Flush Trim
(Molded trim ring removed)

Molded
Trim Ring

Overlap Self-Flange Matte White or Polished

Ceiling Cutout: 5 1/16" Dia.

Reflector Trims		Frame-In Kit	Lamp
G7057CLW G7057CLP G7057CL G7057 \qquad	Specular Clear finish with white flange	G410	A19, 100W max.
	Specular Clear finish with polished flange Specular Clear finish with molded trim ring (flangeless)	Remodeler	Lamp
	Add suffix for other finishes (see options)	G410RM	Same as G410

Features

1. Socket Cup: Heat-dissipating die-formed aluminum contains medium base porcelain socket with nickel plated screw shell wired with No. 18 SF1 leads to J-Box. Installs on reflector with positive position locking springs to assure proper optical alignment of lamp to reflector-attached without tools.
2. Mounting Brackets: Adjust vertically from inside of fixture. Durable 16 ga. steel construction. Use with standard $3 / 4^{\prime \prime}$ or $11 / 2^{\prime \prime}$ lathing channels (by others), or Lightolier accessory mounting bars.
3. Retaining Springs: Precision-tooled springs secure reflector to mounting frame for quick tool-less installation.
4. Reflector: 16 ga. Specular Alzak ${ }^{\oplus}$ aluminum, 50° visual cut-off to lamp and lamp image. Available with white or polished flange, or with removable white molded trim ring (field paintable).
5. Junction Box: 14 ga. steel, $4^{\prime \prime} \times 4$ " $\times 2$ " box allows inspection from below.
6. Thermal Protector: Meets NEC and UL requirements. Insulation must be kept 3" away from fixture sides and wiring compartments and must not be placed above fixture in a manner which will entrap heat.
7. Mounting Frame: Die-cast aluminum suitable for dry or plaster ceilings. Provides flangeless trim in plaster ceiling.

Other Reflector Finish Options

Comfort Clear Diffuse	CCD
Specular Gold	GD
White	WH

Flange Options

White W
Polished Flange $\quad \mathbf{P}$
Flangeless Leave Blank (molded trim ring)

Options \& Accessories
18" Mounting Bars 1950 (set of 2)
27" Mounting Bars 1951 (set of 2)
TBar Ambr
1956 (set of 4, for 1950 \& 1951 bars) Existing Ceiling Clips
Sloped Ceiling Adapters
Step Down Transformer
Chicago Air Plenum
7998 (set of 2)
See SCA specification sheet
7997 (see separate specification sheet)
LC (add suffix to Frame-in Kit, requires access from above ceiling)

Electrical

UL Listed for maximum of 8 No. $12,75^{\circ} \mathrm{C}$ through branch circuit supply conductors, or $60^{\circ} \mathrm{C}$ conductors for end of run.

Labels

UL Listed for damp locations, I.B.E.W.

Alzak ${ }^{\oplus}$ is a registered trademark of ALCOA.

Job Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte Thomas Company
www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish.
© 2002 Genlyte Thomas Group LLC (Lightolier Division) • A0902

\square

AUTH: \qquad
DATE: \qquad

Use quick calculator chart to determine spacing of luminaires for desired level of illumination.
Conversion Factor: 100W A19 (gold): F.C. x 0.90
Spacing Ratio= 1.1
Candepower Summary

Job Information

Lightolier a Genlyte Thomas Company
www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish.

TYPE:

HL-1

AUTH: \qquad DMM

DATE: 04/12/07

Micro Spot D
System Options

() Denotes dimensions in millimeters

* Fixture terminates to track system or monopoint with Transjack connector. Fixtures ordered with system code include Transjack connector for that system. Order fixture with "NS" code when using a monopoint.

Ordering Information

Fixture	System	Overall Length	Finish
MID-Micro Spot D (Not Field Adjustable)	CA4 - Cable 4" CA6 - Cable 6" TR4 - Twin Rail 4" TR6 - Twin Rail 6" BTC - Basis Ceiling BTW - Basis Wall (Max. 16") LT - Liana NS - No System Connector*	ST - Standard 4" 5"-72" - Specify Length (When ordering non-standard overall length, use whole numbers only-no fractional inches.)	AL - Satin Aluminum PN - Polished Nickel RB - Rubbed Bronze (Rubbed Bronze is not available for Twin Rail)

Features

1. Description: Precision machined luminaire with integral single accessory holder and clear lens. Machined yoke with countersunk hardware.
2. System Options: Micro Spot D is available for Cable 4" \& 6", Twin Rail 4" \& 6", Basis Ceiling Mount, Basis Wall Mount, Liana and low voltage monopoints.
3. Lamping: MR16 Lamp 50w max.
4. Function: Rotates 360 degrees and pivots 180 degrees. Overall length is not field adjustable.
5. Electrical: Transjack connector contacts utilize 24 kt gold plated brass pin and sleeve connector housed in aluminum.

Accessories

Filters, louvers, snoots, glass rings and double accessory holder.

Finishes

1. Satin Aluminum
2. Polished Nickel
3. Rubbed Bronze - finish is crafted with a solid brass substrate and buffed by hand to create an authentic rubbed bronze finish. Due to this hand-applied process, finish may vary.

Job Name:	
Cat. No.:	Type:
Lamp(s):	
Notes:	

Translite Sonoma www.translitesonoma.com
22678 Broadway Suite One : Sonoma, CA 95476
Toll free 8889994540 : Fax 7079966926
We reserve the right to change details of design, materials and finish. © 2005 Genlyte Group LLC

Labels

UL and CUL Listed

Measuring Overall Length

Track System Fixtures

Overall length for a track system fixture is measured from the bottom of the track to the bottom of the fixture.
To calculate overall length, take the distance from the bottom of the fixture to the top of the Transjack connector* and add the system connector measurement for the selected system. Overall length differs according to the system connector selected.

	Basis	Cable Twin Rail	Liana	NS
System Connector	.38"	.63"	.94"	$0{ }^{\prime \prime}$

Monopoints

Overall length for a monopoint fixture is measured from bottom of the monopoint to the bottom of the fixture. (The monopoint canopy is measured separately.)

This measurement is equivalent to the distance from the bottom of the fixture to the top of the Transjack connector.*

Rotor

() Denotes dimensions in millimeters

[^6]
TRANSLITE : SONOMA

Translite Sonoma www.translitesonoma.com 22678 Broadway Suite One : Sonoma, CA 95476 Toll free 8889994540 : Fax 7079966926 We reserve the right to change details of design, materials and finish
© 2005 Genlyte Group LLC
\qquad

Ceiling Cutout: 6 9/16" (167 mm) Dia.

Reflector Trim		Frame-In Kit		Lamp	
8021 CCLW	Comfort ClearM, White Flange	S6132BU	Electronic	120V-277V	26 or 32W Triple Tube
8021 CCLP	Comfort Clearm, Polished Flange	S6132BCU3	Universal Dimming	120V-277V	4-Pin (Amalgam)
8021 CCL	Comfort ClearTM, Molded Trim Ring	S6132BJUM7	Advance Mark7	120V-277V	
8021	Add suffix. See options for other finishes.	Remodeler	Frame-In Kit		Lamp
		6132BURM	Electronic	120V-277V	26 or 32W Triple Tube 4-Pin (Amalgam)

Features

1. Reflector: 16 ga. Alzak ${ }^{\oplus}$ aluminum, 50° visual cutoff to lamp and lamp image, medium distribution. Comfort Clear™ low iridescence finish. Self-flanged or flangeless with molded white trim ring (field paintable).
2. Socket Cup: Effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
3. Mounting Frame: Galvanized steel for dry or plaster ceilings. Accepts other 6" Triple Tube reflectors (see S6132BU Spec Sheet).
4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
5. Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use $3 / 4^{\prime \prime}$ or $11 / 2^{\prime \prime}$ lathing channel, $1 / 2^{\prime \prime}$ EMT, or optional mounting bars.
6. Ballast/J-Box: Electronic 120V-277V. UL listed for through branch circuit wiring with max of (8) No. $12 \mathrm{AWG}, 90^{\circ} \mathrm{C}$ supply conductors. Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to
"Ballast" specification sheet for complete electrical data.
S6132BU, S6132BCU: UL listed for through branch circuit wiring with max of (8) No. 12 AWG, $90^{\circ} \mathrm{C}$ supply conductors.
6132BURM: UL listed for No. $12 \mathrm{AWG}, 90^{\circ} \mathrm{C}$ supply conductors.
Options and Accessories

Comfort Clear"' Fini		Other Finishes	
Diffuse	CCD	White	WH
Champagne Bronze	CCZ		
Pewter	CPW		
${ }^{\text {'S }}$ Specify desired flange. W White, P Polished, Blank - Molded Rin			
Other Dimming:			
S6132BJ1MX Adva	MarkX, 120V	S6132BJ1LD	Lutron
S6132BJ2MX Adva	MarkX, 227V	S6132BJ2L	Lutron

Options and Accessories (continued)

Lightolier a Genlyte company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC •E0406
\qquad
DATE: \qquad

CENTER TO CENTER DISTANCE OF FIXTURES IN FEET
This quick calculator chart determines the number and spacing of 1 lt.- 26 W TTT units with Comfort Clear ${ }^{T \mathrm{M}}$ reflector, for any level of illumination.
Spacing Ratio $=\mathbf{1 . 0}$

EFFICIENCY=48.1\%
DATE: 4-23-99
CIE TYPE DIRECT
LUMINOUS DIAMETER: 6.000
THIS REPORT BASED ON LM-1 AND
OTHER PERTINENT IES PROCEDURES

Coefficients of Utilization

EFFECTIVE FLOOR CAVITY REFLECTANCE $=.20$

	EFFECTIVE FLOOR CAVITY REFLECTANCE $=.20$					
	80	70	50	30	10	
	$50 \quad 30 \quad 10$	$\begin{array}{\|l\|l\|} \hline & \text { WALI } \\ 50 & 30 \\ \hline \end{array}$	L OF REFLEC 503010	TANCE $50 \quad 30 \quad 10$	$50 \quad 30 \quad 10$	0
1	. 54.53 .52	.53.52.51	. 51.50 .49	. 49.48 .48	. 47.47 .46	. 46
2	. 50.49 .47	. 50.48 .47	. 48.47 .46	. 47.46 .45	. 45.45 .44	43
은 3	. 47.45 .44	. 47.45 .43	. 46.44 .43	. 44.43 .42	. 43.42 .41	. 41
区 4	. 45.42 .40	. 44.42 .40	. 43.41 .40	. 42.41 .39	41.40 .39	. 38
$\gtreqless 5$. 42.39 .37	. 42.39 .37	. 41.39 .37	. 40.38 .37	. 39.38 .36	. 36
$\gtrless 6$. 40.37 .35	. 39.37 .35	. 39.36 .35	. 38.36 .34	. 37.36 .34	34
$\sum 7$. 37.34 .33	. 37.34 .32	. 36.34 .32	. 36.34 .32	. 35.33 .32	. 31
O 8	. 35.32 .30	. 34.32 .30	. 34.32 .30	. 34.31 .30	. 33.31 .30	29
¢ 9	. 33.30 .28	. 32.30 .28	. 32.30 .28	. 32.29 .28	. 31.29 .28	. 27
10	. 31.28 .26	. 30.28 .26	. 30.28 .26	. 30.27 . 26	. 29.27 .26	25

ZONE LUMENS \%LAMP \%LUMINAIR $0-30 \quad 533$ LAMP \%LUMINAI

$0-30$	533	29.66	61.66
$0-40$	778	43.25	89.92

$0-60$	863	47.98	99.95
$0-90$	865	48.10	100.00

$0-90$	865	48.10	100.00
$40-90$	87	4.85	10.08
0.90	2	12	.25

$\begin{array}{llll}60-90 & 2 & .12 & .25 \\ 0-180 & 0 & .00 & 00\end{array}$
$\begin{array}{llll}0-180 & 865 & 48.10 & 100.00\end{array}$

32W
Quick Calculator

CENTER TO CENTER DISTANCE OF FIXTURES IN FEET
This quick calculator chart determines the number and spacing of 1 lt .- 32W TTT un with Comfort Clear ${ }^{\text {TM }}$ reflector, for any level of illumination

Spacing Ratio = 1.1
REPORT PREPARED FOR: LIGHTOLIER 04-27-1999

**EFFICIENCY $=52.7 \%$ **
DATE: 4-27-99
CIE TYPE DIRECT
LUMINOUS DIAMETER: 6.000
THIS REPORT BASED ON LM-1 AND OTHER PERTINENT IES PROCEDURES.

Coefficients of Utilization

	EFFECTIVE FLOOR CAVITY REFLECTANCE = . 20					
	80	70	50	30	10	
	$50 \quad 30 \quad 10$	$\begin{array}{\|l\|l\|} \hline & \text { WAL } \\ 50 & 3010 \\ \hline \end{array}$	LOF REFLEC	$\begin{array}{\|l\|} \hline \text { TANCE } \\ 50 \quad 30 \\ \hline \end{array}$	$50 \quad 30 \quad 10$	0
1	. 59.58 .57	. 58.57 .56	. 56.55 .54	. 54.53 .53	. 52.52 .51	. 50
2	. 56.54 .53	. 55.54 .52	. 54.52 .51	. 52.51 .50	. 51.50 .49	. 48
3	. 53.51 .50	. 53.51 .49	51.50 .49	. 50.49 .48	. 49.48 .47	46
を 4	. 51.48 .47	. 50.48 .46	. 49.47 .46	. 48.46 .45	. 47.46 .45	44
5	. 48.46 .44	. 48.45 .44	. 47.45 .43	. 46.44 .43	. 45.44 .43	42
6	. 46.43 .42	. 46.43 .41	. 45.43 .41	. 44.42 .41	. 44.42 .41	40
7	. 44.41 .39	. 43.41 .39	. 43.41 .39	. 42.40 .39	. 42.40 .39	. 38
8	. 41.39 .37	. 41.39 .37	. 41.38 .37	. 40.38 .37	. 40.38 .36	. 36
$\bigcirc 9$. 39.36 .35	. 39.36 .35	. 38.36 .35	. 38.36 .34	. 38.36 .34	. 34
10	. 35.32 .31	. 35.32 .31	. 35.32 .30	. 34.32 .30	. 34.32 .30	30

J ob Information Type:

TYPE:

HL-6

AUTH: \qquad DMM

DATE: \qquad $04 / 12 / 07$

IZT-2S26-M5-LD@277	
Brand Name	MARK 70-10V
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Electrical Specifications

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (Watts) $(\mathbf{m i n} / \mathbf{m a x})$	Ballast Factor (min/max)	MAX THD \%	Power Factor	Lamp Current Crest Factor	B.E.F. * CFTR26W/GX24Q 1
1	26	$50 / 10$	0.10	$08 / 28$	$0.03 / 1.00$	10	0.99	1.6		
CFTR26W/GX24Q	2	26	$50 / 10$	0.18	$13 / 49$	$0.03 / 1.00$	10	0.99	1.6	2.04

Wiring Diagram

Green Terminal Must Be Grounded
Diag. 166
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Revised 02/13/2004

[^7]\qquad

Page 1 of 2
7 3/8" Aperture Triple Tube Vertical Lamp

Ceiling Cutout: $8^{\prime \prime}(203 \mathrm{~mm})$ Dia.

Reflector Trim		Frame-In Kit			Lamp
	Comfort Clear", White Flange Comfort Clear", Polished Flange Comfort Clear", M olded Trim Ring Add suffix. See options for other finishes.	$\quad$$7132 B U$ $7132 B C U 3$ Note:	Electronic PowerSpec ${ }^{8}$ Dimming Add \mathbf{S} for Steel frame Without S- Die Cast:	120V-277V 120V-277V S7142BU-Steel Frame 7142BU - Die Cast	26 or 32W Triple Tube
8022		S7142BU S7142BCU3 S7142BUEM	Electronic PowerSpec ${ }^{8}$ Dimming Electronic Emergency	$\begin{aligned} & \hline 120 \mathrm{~V}-277 \mathrm{~V} \\ & 120 \mathrm{~V}-277 \mathrm{~V} \\ & 120 \mathrm{~V}-277 \mathrm{~V} \end{aligned}$	42W Triple Tube
		Remodel	Frame-In Kit		Lamp
		7142B URM	Electronic	120V-277V	26/32/42W Triple Tube

Features

1. Reflector: 16 ga . Alzak ${ }^{8}$ aluminum, 50° visual cutoff to lamp and lamp image, medium distribution. Comfort Clear ${ }^{\text {TM }}$ low iridescence finish. Self-flanged or flangeless with molded white trim ring (field paintable).
2. Socket Cup: Effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
3. Mounting Frame: Galvanized steel for dry or plaster ceilings. Accepts other 6" Triple Tube reflectors (see S6132BU Spec Sheet).
4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
5. Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use $3 / 4^{\prime \prime}$ or $11 / 2^{\prime \prime}$ lathing channel, $1 / 2^{\prime \prime} \mathrm{EM} \mathrm{T}$, or optional mounting bars.
6. Ballast/J -Box: Electronic $120 \mathrm{~V}-277 \mathrm{~V}$. UL listed for through branch circuit wiring with max of (8) No. $12 \mathrm{AW} \mathrm{G}, 90^{\circ} \mathrm{C}$ supply conductors. Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools.

Electrical

Note: Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data. S7142BU, S7142BCU3: UL_ listed for through branch circuit wiring with maxof (8) No. $12 \mathrm{AWG}, 90^{\circ} \mathrm{C}$ supply conductors.
7142BURM: UL_listed for No. 12 AWG, $90^{\circ} \mathrm{C}$ supply conductors.

Options and Accessories

Comfort Clear" Fin		Other Finishes	
Diffuse	CCD	White	WH
Champagne Bronze	CCZ		
${ }^{1}$ Specify desired flange. W W hite, P Polished, Blank - M olded Ring			
Other Dimming:			
SJ 1M X Advance M	X, 120V	S7142BJ 1LD3 Lut	n $\mathrm{Hi}-\mathrm{l}$
SJ 2M X Advance M	X, 277V	S7142BJ 2LD3 Lut	n Hi-lu

Options and Accessories (continued)	
Emergency Ltg. Kit	FA EM 3E*
	FA EM 4*
Fuse (Slow Blow)	Add suffix F
Existing/Thk. Ceiling	Plaster Trim Ring CA7FL
Emergency	Add suffix EM*
Chicago Plenum	Use 7142, BULC
*See Spec. Sheets: FAEM, FAEC	
M ounting Bars \& Acce Sloped Ceiling Adapte	sories; see Specification She ; see Specification Sheet SC

Labels

UL Listed for Damp Locations
Alzak ${ }^{8}$ is a registered trademark of ALCOA

J ob Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte company www.lightolier.com 631 Airport Road, Fall River, M A 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • C1006

AUTH: \qquad
DATE: \qquad

This quick Calculator chart determines the number and spacing of 1 lt -32W PL-T units with Comfort
Clear ${ }^{\text {th }}$ reflector for any level of illumination. Conversion factor: 1 lt . 26 W PL-T with Comfort Clear Clear ${ }^{T m}$ reflector multiply, F.C. $\times 0.8$.

Spacing Ratio $=1.1$

REPORT PREPARED FOR: LIGHTOLIER
REPORT NO: LRL 499-9F2
REPORT BY: LIGHTING RESEARCH LABORATORY, INC
DESCRIP: 7.5" DIA. RECESSED DOW NLIGHT WITH COM FORT CLEAR ${ }^{\text {m }}$ REFLECTOR LAMPS: 1PL-T 32W LUMENS $=2400$

CANDLEPOWER SUM MARY

Coefficients Of Utilization
Effective Ceiling cavity reflectance

		EFFECTIVE CEILING CAVITY REFLECTANCE														
			80		70			50			30		10			0
		W ALL REFLECTANCE														
		50	$30 \quad 10$	50	30	10	50	30	10	50	30	10	50	30	10	0
	1	. 69	. 67.66	. 67	. 66	. 65	. 65	. 64	. 63	. 63	. 62	. 61	. 61	. 60	. 59	58
O	2	. 65	. 63.61	. 64	. 62	. 60	. 62	. 60	. 50	. 60	. 59	. 58	. 58	. 57	. 56	56
¢	3	. 61	. 59.57	. 61	. 58	. 56	. 59	. 57	. 55	. 58	. 56	. 55	. 56	. 55	. 54	53
$\grave{ }$	4	. 58	. 55.53	. 57	. 54	. 52	. 56	. 54	. 52	. 55	. 53	. 51	. 54	. 52	. 50	50
$\stackrel{5}{5}$	5	. 55	. 51.49	. 54	. 51	. 49	. 53	. 50	. 49	. 52	. 50	. 48	. 51	. 49	. 48	47
S	6	. 52	. 48.40	. 51	. 48	. 40	. 50	. 48	. 40	. 50	. 47	. 45	. 49	. 47	. 45	44
Σ	7	. 49	. 45.43	. 46	. 45	. 43	. 48	. 45	. 43	. 47	. 44	. 43	. 46	. 44	. 42	42
ర్ల	8	. 46	. 42.40	. 40	. 42	. 40	. 45	. 42	. 40	. 44	. 42	. 40	. 44	. 41	. 40	39
	9	. 43	. 40.37		. 39	. 37	. 42	. 39	. 37	. 42	. 39	. 37	. 41	. 39	. 37	36
	10	. 38	. 35.32	. 38	. 35	. 32	. 38	. 35	. 32	. 37	. 34	. 32	. 37	. 34	. 32	31

For 1 Lt. 26W triple tube with Comfort Clear reflector multiply C.U.'s by 1.1

42W Quick Calculator

This quick Calculator chart determines the number and spacing of 1 lt .-42W PL-T units with Comfort Clear" reflector for any level of illumination.
Spacing Ratio =. 9
REPORT PREPARED FOR: LIGHTOLIER
REPORT N O: LRL 499-9E
REPORT BY: LIGHTING RESEARCH LABORATORY, INC.
DESCRIP: 7.5" DIA. x 11 HT RECESSED DOW NLIGHT WITH COM FORT CLEAR ${ }^{\text {m }}$ REFLECTOR. LAM PS: 1PLT 42W LUM ENS=3200

Coefficients of Utilization
Ef
EFFECTIVE FLOOR ZONAL CAVITY METHOD
ZONAL CAVITY M ETHOD
CAVITY RELLECTANCE $=20$

CC WALL RCR	80			70			50			30			10			
	50	30	10	50	30	10	50	30	10	50	30	10	50	30	10	0
1	. 66	. 65	. 64	. 65	. 64	. 63	. 63	. 62	. 61	. 60	. 60	. 59	. 58	. 58	. 57	. 56
2	. 62	. 60	. 58	. 61	. 59	. 57	. 59	. 58	. 56	. 57	. 56	. 55	. 56	. 55	. 54	. 53
3	. 58	. 55	. 53	. 57	. 55	. 53	. 56	. 54	. 52	. 54	. 53	. 51	. 53	. 52	. 50	. 50
4	. 55	. 52	. 49	. 54	. 51	. 49	. 53	. 50	. 48	. 52	. 50	. 48	. 51	. 49	. 47	. 46
5	. 51	. 48	. 46	. 51	. 48	. 45	. 50	. 47	. 45	. 49	. 46	. 45	. 48	. 46	. 44	. 43
6	48	. 45	. 42	. 48	. 45	. 50	. 47	. 44	. 42	. 46	. 44	. 42	. 45	. 43	. 41	. 41
7	45	. 42	. 39	. 45	. 41	. 39	. 44	. 41	. 39	. 43	. 41	. 39	. 43	. 40	. 38	. 38
8	42	. 39	. 36	. 42	. 38	. 36	. 41	. 38	. 36	. 40	. 38	. 36	. 40	. 37	. 36	. 35
9	. 39	. 36	. 33	. 39	. 35	. 33	. 38	. 35	. 33	. 38	. 35	. 33	. 37	. 35	. 33	. 32
10	1.37	. 33	. 31	. 36	. 33	. 31	. 36	. 33	. 31	. 35	. 32	. 30	. 35	. 32	. 30	. 30

ob Information

Type:

IDL-2S26-M5-LD@277	
Brand Name	ROVR
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Electrical Specifications

MAX	MAX THD $\%$	Power Factor	Lamp Current Crest Factor
10	0.99	1.6	2.17

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$4.98 "$	$3.00{ }^{\prime}$	$1.18{ }^{\prime}$	$4.60 "$
$449 / 50$	3	$19 / 50$	$43 / 5$
12.6 cm	7.6 cm	3 cm	11.7 cm

\qquad

Cardinal CD27 \& CD27P

one, two, or three T 5 or T 5 HO lamps

Williams College

‘62 Center For Theatre \& Dance

AUTH: \qquad
DATE: 04/12/07

Cardinal CD27 \& CD27P

Williams College ‘62 Center For Theatre \& Dance

AUTH: \qquad
DATE: \qquad

A ADVANCE

Electrical Specifications

VCN-132-MC	
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ}\right.$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F21T5	1	21	$50 / 10$	0.10	27	1.10	10	0.98	1.7
F25T8	1	25	$0 /-18$	0.09	25	0.98	10	0.98	1.7
F28T5	1	28	$50 / 10$	0.11	30	0.98	10	0.99	1.7
* F32T8	1	32	$0 /-18$	0.11	30	0.98	10	0.98	1.7
F32T8/ES (30W)	1	30	$60 / 16$	0.10	28	0.98	10	0.98	1.7

Diag. 63
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.08 "	$1.05 \mathrm{\prime}$	$8.91^{\prime \prime}$
$91 / 2$	$12 / 25$	$11 / 20$	$891 / 100$
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086

Williams College
‘62 Center For Theatre \& Dance
AUTH: \qquad
DATE: \qquad

A ADVANCE

Electrical Specifications

VOP-3P32-SC	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	277
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right)$	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F32T8	1	32	$0 /-18$	0.14	37	1.08	20	0.94	1.7
F32T8	2	32	$0 /-18$	0.23	62	0.94	10	0.98	1.7
F32T8	3	32	$0 /-18$	0.30	82	0.88	10	0.99	1.52

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50^{\prime}	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Standard Lead Length (inches)

	in.	cm.
Black	25 L	63.5
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow	0	0
Gray	0	0
Violet	0	0

	in.	cm.
Yellow/Blue	0	0
Blue/White	0	0
Brown	0	0
Orange	0	0
Orange/Black	0	0
Black/White	0	0
Red/White	0	0

 sulate unused blue
lead for 1000 V lead for 1000 V

Cardinal CD27 \& CD27P

one, two, or three T 5 or T 5 HO lamps

Williams College

‘62 Center For Theatre \& Dance

TYPE:
HL-11A
AUTH: \qquad
DATE: 04/12/07

Cardinal CD27 \& CD27P

Williams College ‘62 Center For Theatre \& Dance

type: HL-11A

AUTH: \qquad
DATE: 04/12/07

A ADVANCE

Electrical Specifications

VCN-132-MC	
Brand Name	CENTIUM MICRO CAN
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Series
Input Voltage	277
Input Frequency	60 HZ
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ}\right.$ F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD $\%$	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F21T5	1	21	$50 / 10$	0.10	27	1.10	10	0.98	1.7
F25T8	1	25	$0 /-18$	0.09	25	0.98	10	0.98	1.7
F28T5	1	28	$50 / 10$	0.11	30	0.98	10	0.99	1.7
* F32T8	1	32	$0 /-18$	0.11	30	0.98	10	0.98	1.7
F32T8/ES (30W)	1	30	$60 / 16$	0.10	28	0.98	10	0.98	1.7

Diag. 63
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black		0
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow		0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White	25 L	63.5
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$9.50{ }^{\prime}$	1.08 "	$1.05 \mathrm{\prime}$	$8.91^{\prime \prime}$
$91 / 2$	$12 / 25$	$11 / 20$	$891 / 100$
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 07/23/2004

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

ADVANCE

O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086

AUTH: \qquad
DATE: \qquad

A ADVANCE

Electrical Specifications

VOP-3P32-SC	
Brand Name	OPTANIUM
Ballast Type	Electronic
Starting Method	Instant Start
Lamp Connection	Parallel
Input Voltage	277
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Lamp Type	Num. of Lamp \mathbf{s}	Watts	Rated Lamp Wata	Min. Start Temp $\left({ }^{\circ} \mathrm{F} / \mathrm{C}\right)$	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD \%	Power Factor
MAX Lamp Current Crest Factor	B.E.F.								
F32T8	1	32	$0 /-18$	0.14	37	1.08	20	0.94	1.7
F32T8	2	32	$0 /-18$	0.23	62	0.94	10	0.98	1.7
F32T8	3	32	$0 /-18$	0.30	82	0.88	10	0.99	1.52

Wiring Diagram

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50^{\prime}	$1.7^{\prime \prime}$	$1.18^{\prime \prime}$	$8.90^{\prime \prime}$
$91 / 2$	$17 / 10$	$19 / 50$	$89 / 10$
24.1 cm	4.3 cm	3 cm	22.6 cm

Standard Lead Length (inches)

	in.	cm.
Black	25 L	63.5
White	25 L	63.5
Blue	31 R	78.7
Red	37 L	94
Yellow	0	0
Gray	0	0
Violet	0	0

	in.	cm.
Yellow/Blue	0	0
Blue/White	0	0
Brown	0	0
Orange	0	0
Orange/Black	0	0
Black/White	0	0
Red/White	0	0

 sulate unused blue
lead for 1000 V lead for 1000 V

COMBOLIGHT® GALLERIA Series • CGWC
FOUR (4) Light Wall Mount Swivel Column Fixture
Grid Configuration "C" • Lamp Groups 1, 2, \& 3

Type

Project
Low Voltage, Line Voltage or Metal Halide for Remote Transformer/Ballast

DESCRIPTION:

A wall mounted fixture with a swiveling grid column.

CONSTRUCTION:

All aluminum construction. Grid is made of $75^{\prime \prime}$ square aluminum tubing with .062" wall thickness. Weight base adds stability to fixture.

LAMP ASSEMBLY:

Four lamps mounted in adjustable double gimbal lamp holders. Dual axis $900^{\circ} \times 90{ }^{\circ}$ locking adjustability. Lamp column swivels 50°.

ELECTRICAL:

Low voltage and metal halide models are wired for use with remote transformers or ballasts. Custom configurations are available for integral transformers or ballasts - consult RSA factory for details. Low voltage and Line Voltage models are dimmable.

ALL RSA COMBOLIGHT PRODUCTS ARE MADE IN THE U.S.A.

Label: UL, CSA and New York Calendar

SPECIFY -

Specifications and Dimensions subject to change without notice.

RSA Lighting • 7945 Orion Ave. •Van Nuys, CA 91406•818-349-3030•FAX 818-349-3031

AUTH: \qquad

Page 1 of 1
Metallics ${ }^{\circledR}$ PAR38/ED17 Dome Shade

Ordering Information

Catalog No.	Finishes	Lamps	Use With Metallics Adapters
8747 WH	Matte White	INCANDESCENT: PAR38 250W Max. 150W Max. with	8701
8747 TM	Dark Titanium	Accessories (When used on luminaires 8701 \& 28701)	8705E
8747 NM	Natural Metal	METAL HALIDE: PAR38 70W (When used on luminaire 8706E)	8706 E
		METAL HALIDE: ED-17 70W: (When used on luminaire 8705E \&	8707E
		28705E) (Reflector Needed)	8708E
		METAL HALIDE: PAR38 100W (When used on luminaire 8707E)	28701
		METAL HALIDE: ED-17 100W (When used on luminaire 8708E) (Reflector Needed)	28705E

Features

1. Shade: Die-cast aluminum.
2. Neck Flange: Cold rolled steel, zinc-plated. Used to attach shade to luminaire, without tools.
3. Groove: To connect optional Accessory Holder to shade.

Options and Accessories
Metallics PAR38 Accessory Holder (8784) \& Accessories. Order separately (See Lightolier Specification Sheet 8784).
Compatible With ED17 Reflectors:
83ED17RNS
83ED17RS
83ED17RF
83ED17RWF
Finish
All painted finishes: White or Titanium baked enamel, or Brushed Metal with protective clear coat.

Labels
UL

Job Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte Thomas Company
www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2002 Genlyte Thomas Group LLC (Lightolier Division) • C0902

AUTH: \qquad
DATE: 04/12/07

TIEMPO TM5

FIXTURE	MOUNTING	REFLECTOR	VOLTS	FINISH	OPTIONS
Quartz Halogen TM501 500W Max Mini-Can Ceramic Metal Halide TM517 35W/39W CMH (T6, G12 Base) TM522 70W CMH (T6, G12 Base) TM523 100W CMH (T6, G12 Base) TM527 150W CMH (T6, G12 Base) Metal Halide TM540 70W MH (E17, Med Base) TM541 100W MH (E17, Med Base) TM542 150/175W MH (E17, Med Base) (Specify Wattage)	RCB Surface Mount Remote Ballast	(1) Asymmetric Indirect (2) Asymmetric Wallwash	$\begin{aligned} & 1=120 \mathrm{~V} \\ & 2=277 \mathrm{~V} \\ & 7=347 \mathrm{~V} \end{aligned}$ Quartz Halogen Available in 120 V Only	W Semi-Gloss White BL Semi-Gloss Black BR Semi-Gloss Bronze N Semi-Gloss Natural S Semi-Gloss Satin G Semi-Gloss Graphite SF Specify Finish (See Color Chart) cc Custom Color (Contact Factory)	VS Solid Cutoff Visor VP Perforated Cutoff Visor GS External Louvered Visor AL Adjustable Shutter SS Adjustable Back Sawtooth Shield CF "Fade Not" Visored Color Lens CDF Dichroic Visored Color Lens UV UV Filter F HLR Fuseholder QEM Quartz Emergency Socket \# QL Quartz Restrike-Hot/Cold Relay \# CM-X Column Mount (X=Column Diameter)* \# DC Bayonet Lamp, 50W Maximum. Available With TM517, TM522, TM523, TM527 Only. * Consult Factory For Minimum Column Dia.
ORDERING EXAMPLE: TM517 / WCB / (1) / 1 / W / GS					

SPECIFICATIONS

Housing Extruded aluminum housing with die cast end plates secured to mounting bracket with a single fastener. Fastener is hidden inside of lamp housing allowing for no visible hardware.
Lens Clear prismatic tempered glass lens. Lens is secured to an anodized extruded aluminum frame. Lamp is maintained by a tool-less doorframe with die cast aluminum latches that hinge in either direction for ease of lamping and maintenance.
Reflector Die formed highly efficient unitized reflector systems constructed of 95% specular anodized peened aluminum. Reflector can be easily adjusted in field by hand rotating lamp housing to desired position while illuminated.

Wall Bracket: The wall bracket mounts to a standard 4-0 j-box (by others). Additional structural support is required (by others). Electrical Quartz Halogen is available in 120V only. All Metal Halide ballasts are remote, high power factor, encased \& potted, thermally protected, class 'B' sound rated, and supplied with j-box for thru wiring. Butterfly brackets supplied for T-bar ceiling mounting.
Labels Underwriters Laboratories and Canadian

FIXTURE	MOUNTING TYPE	REFLECTOR	VOLTS	FINISH	OPTIONS
TM5	RCB				

\square

I N S I G H T

TEL: 505 345-0888 FAX: 505 345-3838 www.insightlighting.com

Williams College
‘62 Center For Theatre \& Dance

AUTH: \qquad
DATE: \qquad

Catalog Number	Lamp
M026A0 Matte white housing with specular clear reflector	PAR38,150W (cool beam) PAR30, 250W (T.H.)
R40, 300W	
BR40, 300W	

Features

1. Reflector: 16 ga. Specular clear Alzak ${ }^{8}$ aluminum. 50° visual cut-off to lamp and lamp image .
2. Housing: One piece spun 16 ga. aluminum with returned bottom edge to seat reflector, no visable hardw are.M atte white baked enamel finish.
3. Retaining Springs: Coil steel springs secure reflector to housing.
4. Heat Insulltor: Fiberglass bulk insulation.
5. Socket: M edium base porcelain, nickel plated screw shell.

Options \& Accessories

Stem Kit: 7249 M atte white
Permits surface units to be stem mounted. Supplied with $1 / 2^{\prime \prime}$ dia. and $51 / 2^{\prime \prime}$ dia. canopy. $375 / 8^{\prime \prime} 0 . A$. Length. Stem can be cut to length at the job site. Self aligning swivel provides up to 41° vertical adjustment.
Other reflector and housing finishes consult factory.

Alzak ${ }^{8}$ is a registered trademark of ALCOA.

Electrical

Requires $75^{\circ} \mathrm{C}$ Supply wires. No. 18 SF-1 leads to porcelain socket.

Labels

UL Listed for damp locations, I.B.E.W.

J ob Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte Thomas Company
ww w. lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2002 Genlyte Thomas Group LLC (Lightolier Division) • A0902

TYPE:
AUTH: \qquad DMM

DATE: 04/12/07

Page 2 of 2

Use quick calculator chart to determine spacing of luminaires for desired level of illumination.
Conversion Factors:
100W PAR38 FL IR, F.C. X 0.6
120W PAR38 FL, F.C. X 0.5
90 W PAR38 FL, F.C. $\times 0.4$
$75 W \& 65 W$ IR PAR38 FL, F.C. $\times 0.3$
SPACING RATIO $=0.4$
CERTIFED TEST REPORT NO. 0870FR
COM PUTED BY LSI PROGRAM **TEST-LITE** SURFACE CYLINDER OPEN DOW NLIGHT
8" DIA. APERTURE, SPECULAR CLEAR FINISH REFLECTOR 250W PAR38 FL (KRYPTON) PHILIPS LAM P. LUM EN RATING = 3100 LM S

DATE: JUL 30, 1999 PREPARED FOR
LIGHOLIER, FALL RIVER, M A
TESTED ACCORDING TO IES PROCEDURES TEST DISTANCE EXCEEDS FIVE TIM ES THE GREATEST LUMINOUS OPENING OF LUMINAIRE.

ZONAL LUM ENS AND PERCENTAGES $\begin{array}{lccc}\text { ZONE } & \text { LUMENS } & \text { \% LAM } & \text { \% LUMINAIRE } \\ 0-30 & 2743 & 88.50 & 99.17 \\ 0-40 & 2764 & 89.18 & 99.93 \\ 0-60 & 2766 & 89.24 & 100.00 \\ 0-90 & 2766 & 89.24 & 100.00 \\ 40-90 & 1 & .06 & .07 \\ 60-90 & 0 & .00 & .00 \\ 90-180 & 0 & .00 & .00 \\ 0-180 & 2766 & 89.24 & 100.00 \\ & * * \text { EFFICIENCY }=89.2 \% * *\end{array}$

9" Aperture BR40 / R40 / PAR38

Use quick calculator chart to determine spacing of luminaires for desired
level of illumination.
Conversion Factors:
300 W R40 FL, F.C. X 2.2
$90 W$ BR40 FL, F.C. $\times 0.7$
$75 W$ BR40 FL, F.C. $\times 0.5$
75W BR40 FL, F.C. X 0.5

SPACING RATIO $=0.5$
CERTIFIED TEST REPORT NO,0869FR

\qquad DMM

DATE: \qquad

READ AND UNDERSTAND THESE INSTRUCTIONS BEFORE INSTALUNG FIXTURE
This fixture is intended for installation in accordance with the National Electrical Code and local regulations. To assure full compliance with local codes and regulations, check with your local electrical inspector before installation. To prevent electrical shock, turn off electricity at fuse box before proceeding.

Retain these instructions for maintenance reference.

STEM KIT IS DESGEED TO SIMPUFY CONVERSION OF STANDARD SURFACE MOUNTED CYINDER SERES DOWNUGHT TO STEM MOUNTING. STEM KTS ARE SUITABLE FOR DAMP OR DRY LOCATONS ONLY.

A TO INSTALL STEM KIT ON CIUNG.

NOTE: STEM may be shortened by cutting STEM to desired length. This must be done before hanging. Detach STEM from stem kit by loosening SET SCREW from BALL SWVEL. Be sure that lead wires are completely out of STEM. Cut STEM, then drill $1 / 8^{\prime \prime}$ diameter hole, through the STEM $3 / 16^{\circ}$ from end. Be certain to deburr after cutting or slotting (Fig. 1.) (A slot made with a file or hacksaw will also work.) Reassemble STEM and BALL SWIVEL.

1. Bring SUPPLY LEAD WRES from the OUTLET BOX through the center hole of the MOUNTING STRAP. For sloped ceilings, position opening in MOUNTING STRAP facing upward, then thread SCREWS through MOUNTING STRAP to OUTLET BOX (fig. 2 \& 3).
2. Slide CANOPY down STEM to rest on STEM JOINT (Fig. 3)
3. Hook BALL SWVEL on MOUNTING STRAP. Make sure GROOVE in BALL SWVEL aligns with TAB in MOUNTING STRAP (Fig. 4)
4. Slide SAFETY CLIP to MOUNTING STRAP and tighten screw (Fig. 4).
5. Align TABS in CANOPY with NOTCHES in MOUNTING STRAP. Slide CANOPY up over MOUNTNG STRAP and push up against ceiling (Fig 3).

B. TO ATTACH FIXTURE TO STEM (FIG. 5)

1. Remove socket mounting plate from fixture, discard plate, socket, screws and insulation material if any.
2. Remove SCREW RING from STEM SOCKET.
3. Pass SOCKET through large hole ($1-7 / 8^{\circ \prime}$ dia.) on top of fixture.
4. Holding fixture in place, with the top of fixture flush against ADAPTER PLATE, thread SCREW RING onto SOCKET and tighten by turning, making certain that sides of fixture are aligned according to requirements.

FIG. 5

L_IGITOOIIERIR

\qquad
DATE:

Reflector Trim			Frame-In Kit		Lamp	
Single	Double	Corner	7132BU	Electronic	120V-277V	26/32W Triple Tube
W all Washer	Wall Washer	Wall Washer	7132 BCU 3	PowerSpec ${ }^{8}$ Dimming	120V-277V	4-Pin (Amalgam)
8022W W CCLW	8022DW CCLW	8022CW CCLW	Note: Add S for Steel frame: ex. S8242HU - Steel Frame W ithout S- Die Cast: ex. 8242HU - Die Cast			
Comfort Clear ${ }^{\text {ram }}$, W hite Flange						
8022W W CCLP	8022DW CCLP	8022CW CCLP	S7142BU	Electronic	120V-277V	42W Triple Tube
Comfort Clear", Polished Flange			S7142BCU3	PowerSpec ${ }^{\text {® }}$ Dimming	120V-277V	4-Pin (Amalgam)
8022W W CCL	8022DW CCL	8022CW CCL	S7142BUEM	Electronic	120V-277V	

Comfort Clear", M olded Trim Ring
8022WW \qquad Add suffix. See options for other finishes.

Features

1. Dow nlight/W all Washer Reflector: 16 ga . Alzak ${ }^{8}$ aluminum. 50° Iamp cutoff and lamp image. Provides vertical surface wall wash and downlighting. Comfort Clear" low iridescence finish. Self-flanged or flangeless with molded white trim ring (field paintable).
2. Socket Cup: Die-cast aluminum cup effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
3. M ounting Frame: Die-cast aluminum for dry or plaster ceilings. Accepts other 7 " triple tube reflectors.
4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
5. M ounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use $3 / 4$ " or $11 / 2^{\prime \prime}$ lathing channel, $1 / 2^{\prime \prime}$ EMT, or optional mounting bars.
6. Ballast/J-Box: Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools. Provides vertical surface wall wash and downlighting.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data.
UL listed for through branch circuit wiring with max of (8) No. $12 \mathrm{AWG}, 90^{\circ} \mathrm{C}$ supply conductors.

Options and Accessories

Comfort Clear" Finishes ${ }^{1}$
Diffuse CCD
Champagne Bronze CCZ
White
${ }^{1}$ Specify desired flange
W White, P Polished
Blank - M olded Ring

Options and Accessories (continued)
Emergency Add suffix EM
Chicago Plenum Add suffix LC
Emergency Ltg. Kit FAEM 3E*
FAEM 4E*
Fuse (Slow Blow) Add Suffix F
*See Spec. Sheets: FAEM
M ounting Bars \& Accessories; see Specification Sheet M BA.
Sloped Ceiling Adapters; see Specification Sheet SCA.
Labels
UL listed for damp locations.

Alzak ${ }^{8}$ is a registered trademark of ALCOA.
US Patent Pending.
J ob Information
J ob Name:
Cat. No.:
Lamp(s):
Notes:

Lightolier a Genlyte company
631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710
We reserve the right to change details of design, materials and finish.
(c) 2006 Genlyte Group LLC • C1006

AUTH: \qquad

Calculite ${ }^{\text {® }}$ Compact Fluorescent Open W all W asher
 22

i i
0 e o ipe 42 TipeT e i

			-2	
	1	42	43	42
\%	2	46	45	46
$\stackrel{4}{\square}$	3	43	41	44
g	4	39	37	39
$\overline{8}$	5	32	32	33
ε	6	26	26	26
$\stackrel{\frac{2}{4}}{2}$	7	21	21	21
$\stackrel{\square}{\square}$	8	17	17	17
$\frac{y}{n}$	9	14	14	14

$\begin{array}{lllll}2 & \mathbf{o} & \mathbf{4} & \text { e er } & \begin{array}{l}\text { EXAM PLE: W ith multiple clear } \\ \text { reflector units located 3' from wall } \\ \text { and spaced 5' on center (matching } \\ \text { downlights 5' on center), the }\end{array}\end{array}$

$\ddot{\#}$	1	30	13	30
	2	31	15	31
	3	28	16	28
	4	21	18	21
	5	18	16	18
	6	14	13	14
	7	11	11	11
	8	9	9	9
	9	8	8	8

CONVERSION FACTORS (Clear):
32 W, F.C. $\times 0.75$
26W, F.C. x 0.55

p io
 20\% FLOOR CAVITY REFLECTANCE

Williams College
‘62 Center For Theatre \& Dance
AUTH: \qquad
DATE: \qquad

IDL-2S26-M5-LD@277	
Brand Name	ROVR
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Electrical Specifications

MAX	MAX THD $\%$	Power Factor	Lamp Current Crest Factor
10	0.99	1.6	2.17

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
$4.98 "$	$3.00{ }^{\prime}$	$1.18{ }^{\prime}$	$4.60 "$
$449 / 50$	3	$19 / 50$	$43 / 5$
12.6 cm	7.6 cm	3 cm	11.7 cm

\qquad
DATE: \qquad

Ceiling Cutout: 6 9/16" (167 mm) Dia.

Reflector Trim		Frame-In Kit			Lamp
8046CLW	Clear Iridescence Free, White Flange	S6132BU	Electronic	120V-277V	26 or 32W Triple Tube
8046CLP	Clear Iridescence Free, Polished Flange	S6132BCU3	Universal Dimming	120V-277V	4-Pin (Amalgam)
8046	Add suffix. See options for other finishes.	S6132BJUM7	Advance Mark7	120V-277V	

Features

1. Optics: Directional prismatic glass spread lens and Alzak "kick" reflector direct light smoothly across and down wall. Rotates for correct orientation. Aperture cone with Iridescence Free finish.
2. Socket Cup: Effectively dissipates heat and positions lamp holder. Snaps onto reflector neck to assure consistently correct optical alignment without tools.
3. Mounting Frame: Galvanized steel for dry or plaster ceilings. Accepts other 6" Triple Tube reflectors (see S6132BU Spec Sheet).
4. Retaining Springs: Precision-tooled steel friction springs secure reflector to mounting frame for quick, tool-less installation.
5. Mounting Brackets: 16 ga. steel. Adjust from inside of fixture. Use $3 / 4$ " or $11 / 2^{\prime \prime}$ lathing channel, $1 / 2^{\prime \prime}$ EMT, or optional mounting bars.
6. Ballast/J-Box: Electronic $120 \mathrm{~V}-277 \mathrm{~V}$. UL listed for through branch circuit wiring with max of (8) No. $12 \mathrm{AWG}, 90^{\circ} \mathrm{C}$ supply conductors. Outboard mounted to reduce heat transfer and maintain lamp efficacy and life. Service from below without tools.
7. Torsiontite Springs: Wire formed steel holds reflector/spread lens assembly snug to housing.

Electrical

Note: For ballast electrical data and latest lamp/ballast compatibility refer to "Ballast" specification sheet for complete electrical data.
UL listed for through branch circuit wiring with max of (8) No. 12 AWG, $90^{\circ} \mathrm{C}$ supply conductors.
Options and Accessories

Comfort Clear' ${ }^{\text {min }}$		Other F	
Clear	CCL	White	WH
Diffuse	CCD		
Champagne Bronze	CCZ		
Pewter	CPW		
${ }^{\text {'Specify desired flange. W White, }}$ P Polished, Blank - Molded Ring			
Other Dimming:			
S6132BJ1MX Adva	Mark	S6	ron
S6132BJ2MX Adva	Mark	S6	ron

Options and Accessories (continued)

Emergency	Add suffix EM*
Chicago Plenum	Use 6132BULC
Existing/Thk. Ceiling	FA EC6*
Emergency Ltg. Kit	FA EM3E*
	FA EM4E*
Fuse (slow blow)	Add suffix F
*See Spec. Sheets: FAEC FAEM	

*See Spec. Sheets: FAEC, FAEM
Mounting Bars \& Accessories; see Specification Sheet MBA.
Sloped Ceiling Adapters; see Specification Sheet SCA.
IC Frame available; see C6CFL32 specification sheet.

Labels

UL listed for damp locations.

Alzak ${ }^{\oplus}$ is a registered trademark of ALCOA.
US Patent Pending.

Job Information
Job Name:
Cat. No.:
Lamp(s):
Notes:

\qquad

Lighting Data

Footcandles On Wall: Multiple 26w Units

EXAMPLE: With multiple clear reflector units located 2' from wall and spaced 3' on center, the illumination on the wall 3^{\prime} down from ceiling will be 19 f.c. beneath units and 20 f.c. between units.

Footcandles On Wall: Multiple 32w Units

EXAMPLE: With multiple clear reflector units located 2' from wall and spaced 3^{\prime} on center, the illumination on the wall 3^{\prime} down from ceiling will be 26 f.c. beneath units and 25 f.c. between units.

2' From Wall-2' On Center 2' From Wall-3' On Center

Footcandle values are averaged and rounded off and based on minimum of five units.

Job Information	Type:
Lightolier a Genlyte company www. lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • B0406	

3^{\prime} From Wall-3' On Center

3^{\prime} From Wall-4' On Center

3^{\prime} From Wall-3' On Center

3' From Wall-4' On Center

AUTH: \qquad

IZT-2S26-M5-LD@277	
Brand Name	MARK 70-10V
Ballast Type	Electronic Dimming
Starting Method	Programmed Start
Lamp Connection	Series
Input Voltage	$120-277$
Input Frequency	$50 / 60 \mathrm{HZ}$
Status	Active

Electrical Specifications

Lamp Type	Num. of Lamp \mathbf{s}	Rated Lamp Watts	Min. Start Temp (${ }^{\circ}$ F/C)	Input Current (Amps)	Input Power (Watts) $(\mathbf{m i n} / \mathbf{m a x})$	Ballast Factor (min/max)	MAX THD \%	Power Factor	Lamp Current Crest Factor	B.E.F. * CFTR26W/GX24Q 1
1	26	$50 / 10$	0.10	$08 / 28$	$0.03 / 1.00$	10	0.99	1.6		
CFTR26W/GX24Q	2	26	$50 / 10$	0.18	$13 / 49$	$0.03 / 1.00$	10	0.99	1.6	2.04

Wiring Diagram

Green Terminal Must Be Grounded
Diag. 166
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

	in.	cm.
Black	0	0
White	0	0
Blue	0	0
Red	0	0
Yellow	0	0
Gray		0
Violet		0

	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White	0	

Revised 02/13/2004

[^8]AUTH: \qquad
DATE: \qquad

Ceiling Cutout: 6 11/16" Dia.

Reflector Trim		Frame-In Kit		
C6P38A CLW	Specular Clear, White Flange	Non-IC	Non-IC AirSeal ${ }^{\text {® }}$	IC-AirSeal ${ }^{\text {® }}$
C6P38A CLP	Specular Clear, Polished Flange			
C6P38A CLW30	Specular Clear, White Flange ($30^{\circ} \mathrm{Cut}$)	C6D120	C6DA120	C6DAIC
C6P38A CLP30	Specular Clear, Polished Flange ($30^{\circ} \mathrm{Cut}$)	120W PAR38	120W PAR38	90W PAR38
C6P38A	Add suffix. See options for other finishes			

Features

1. Aperture Cone: 16 ga. aluminum. Slot cut cone opening cone minimizes view into fixture. For maximum shielding order the 30° bias cut cone. Keyed to lampholder assembly for true aiming of lamp through aperture center and to prevent incorrect installation of cone. Available with painted white or polished flange. Interchangeable with other Evolution 6 " line voltage trims.
2. Lampholder Assembly: Die-cast aluminum "U" shape lamp and accessory holder provided with tension springs for fast snap-in/snap-out side mounting of lamp and various accessories. 40° vertical tilt, 360° horizontal rotation; lockable. Can be relamped without disturbing aiming. Hot aiming can be done with the blade of screwdriver. Accepts up to two $43 / 4$ " dia. accessories. Can be relamped from above.
3. Socket Harness: Medium base porcelain socket with nickel plated screw shell, No. 18 SF-1 leads to keyed plug-in quick connector for power connection to junction box.
4. Vertical / Horizontal Locking: Single screw adjustment and locking system.
5. Frame-In Kit: Compatible frame-In kits are listed above. See separate frame-in kit specification sheets for details.
Non-IC and Non-IC AirSeal ${ }^{\oplus}$ - Insulation must be kept 3 " away from fixture sides and wiring compartments and must not be placed above fixture in a manner which will entrap heat.
IC-AirSeal ${ }^{\oplus}$ - Fixture may be in direct contact with insulation.

Options \& Accessories

Reflector Finishes ${ }^{1}$

Clear:	CL	Gold:	GD
Black:	WK	Pewter:	CPW
Comfort Clear Diffuse:	CCD		
Champagne Bronze:	CCZ		
'Specify desired flange: \mathbf{W} White, \mathbf{P} P Polished For 30° bias cut cone, add suffix " $30^{\prime \prime}$ ".			

Options \& Accessories (cont.)

Evolution 6" Trims with Non-IC Frames
C6P38A 1 Primary Color Lens or 1 Secondary Color Lens or 1 Mixing Color Lens and 1 Specialty Filter
C6P38A30 1 Primary Color Lens or 1 Secondary Color Lens or 1 Mixing Color Lens and 1 Specialty Filter

Labels
UL listed (suitable for damp locations), I.B.E.W.

US Patent No. 5,957,573. Other US and Foreign Patents Pending.

Job Information	Type:
Job Name:	
Cat. No.:	
Lamp(s):	
Notes:	

Lightolier a Genlyte company www.lightolier.com 631 Airport Road, Fall River, MA 02720 • (508) 679-8131 • Fax (508) 674-4710 We reserve the right to change details of design, materials and finish. © 2006 Genlyte Group LLC • B0406

AUTH: \qquad

PAR38 Halogen Line Voltage Lamps			
Lamps	Beam Spread (To 50\% CBCP)	CBCP	$\begin{aligned} & \text { Rated } \\ & \text { Life (Hrs.) } \end{aligned}$
	1	10000	2500
$\sum_{\substack{45 \mathrm{~W} \text { PAR38 } \\ \text { SP }}}^{\mathrm{S}^{2}}$	$\bigwedge_{12^{\circ}}$	5500	2500
	$\bigwedge_{30^{\circ}}$	1700	2500
	$\bigwedge_{g^{\circ}}$	14000	3000
$\sum_{\substack{\text { 50W PAR33 } \\ \text { FL (HIR) }}}^{\&}$	1	3000	3000
	$\bigwedge_{10^{\circ}}$	17500	3000
60W PAR38 FL	$\bigwedge_{30^{\circ}}$	3200	3000
60W PAR38 WFL (HIR	$\bigwedge_{53^{\circ}}$	1250	3000
$\sum_{\substack{90 \mathrm{~W} \text { PAR38 } \\ \text { NSP }}}^{R}$	$\prod_{9^{\circ}}$	19500	2500
$\sum_{\substack{90 W \text { PAR38 } \\ \text { SP }}}^{P}$	$\bigwedge_{12^{\circ}}$	14500	2500
	$\bigwedge_{28^{\circ}}$	4500	2500
	\bigwedge	1300	2500
100W PAR38 SP (HIR)	$\bigwedge_{10^{\circ}}$	29000	2500
	$\bigwedge_{27^{\circ}}$	7500	3000
	$\bigwedge_{40^{\circ}}$	3400	3000
	$\prod_{10^{\circ}}$	25000	3000
	$\bigwedge_{30^{\circ}}$	5000	3000
	$\bigwedge_{50^{\circ}}$	2000	3000

6" Aperture PAR38 Reflector Trim

Accent Lighting Performance Data
(FC) is initial footcandles at center of beam. Beam length (\mathbf{L}) and beam width (W) are to where the candlepower is reduced to 50% of the center beam candlepower.

CBCP is center beam candlepower. (C) is distance to the center of the beam.
Lamp data shown is typical, and is based on bare lamp photometrics. Contact lamp manufacturers for availability and performance.

Job Information

‘62 Center For 'Theatre \& Dance
type: HL-22
TYPE:
AUTH: \qquad
DATE: \qquad

TIEMPO TM5

FIXTURE	MOUNTING	REFLECTOR	VOLTS	FINISH	OPTIONS
Quartz Halogen TM501 500W Max Mini-Can Ceramic Metal Halide TM517 35W/39W CMH (T6, G12 Base) TM522 70W CMH (T6, G12 Base) TM523 100W CMH (T6, G12 Base) TM527 150W CMH (T6, G12 Base) Metal Halide TM540 70W MH (E17, Med Base) TM541 100W MH (E17, Med Base) TM542 150/175W MH (E17, Med Base) (Specify Wattage)	RCB Surface Mount Remote Ballast	(1) Asymmetric Indirect (2) Asymmetric Wallwash	$\begin{aligned} & 1=120 \mathrm{~V} \\ & 2=277 \mathrm{~V} \\ & 7=347 \mathrm{~V} \end{aligned}$ Quartz Halogen Available in 120 V Only	W Semi-Gloss White BL Semi-Gloss Black BR Semi-Gloss Bronze N Semi-Gloss Natural S Semi-Gloss Satin G Semi-Gloss Graphite SF Specify Finish (See Color Chart) cc Custom Color (Contact Factory)	VS Solid Cutoff Visor VP Perforated Cutoff Visor GS External Louvered Visor AL Adjustable Shutter SS Adjustable Back Sawtooth Shield CF "Fade Not" Visored Color Lens CDF Dichroic Visored Color Lens UV UV Filter F HLR Fuseholder QEM Quartz Emergency Socket \# QL Quartz Restrike-Hot/Cold Relay \# CM-X Column Mount (X=Column Diameter)* \# DC Bayonet Lamp, 50W Maximum. Available With TM517, TM522, TM523, TM527 Only. * Consult Factory For Minimum Column Dia.
ORDERING EXAMPLE: TM517 / WCB / (1) / 1 / W / GS					

SPECIFICATIONS

Housing Extruded aluminum housing with die cast end plates secured to mounting bracket with a single fastener. Fastener is hidden inside of lamp housing allowing for no visible hardware.
Lens Clear prismatic tempered glass lens. Lens is secured to an anodized extruded aluminum frame. Lamp is maintained by a tool-less doorframe with die cast aluminum latches that hinge in either direction for ease of lamping and maintenance.
Reflector Die formed highly efficient unitized reflector systems constructed of 95% specular anodized peened aluminum. Reflector can be easily adjusted in field by hand rotating lamp housing to desired position while illuminated.

Wall Bracket: The wall bracket mounts to a standard 4-0 j-box (by others). Additional structural support is required (by others). Electrical Quartz Halogen is available in 120V only. All Metal Halide ballasts are remote, high power factor, encased \& potted, thermally protected, class 'B' sound rated, and supplied with j-box for thru wiring. Butterfly brackets supplied for T-bar ceiling mounting.
Labels Underwriters Laboratories and Canadian

FIXTURE	MOUNTING TYPE	REFLECTOR	VOLTS	FINISH	OPTIONS
TM5	RCB				

\square

I N S I G H T

TEL: 505 345-0888 FAX: 505 345-3838 www.insightlighting.com

Williams College
‘62 Center For Theatre \& Dance
TYPE:
HL-23
AUTH: \qquad
DATE: \qquad

ADVANCE
O'HARE INTERNATIONAL CENTER • 10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
06/22/00
Customer Support/Technical Service: Phone: 800-372-3331 • Fax: 630-307-3071
Corporate Offices: Phone: 800-322-2086
Williams College
‘62 Center For Theatre \& Dance
AUTH: \qquad
DATE: \qquad

[^0]: Williams College '62 Center For Theater \& Dance Williamstown, MA

[^1]: Table 9.1 - Project Data

[^2]: Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

[^3]: EXTERIEUR VERT , a division of NORTH AMERICA

 1513 E. Saint Gertrude Place Tel 714 957-4960 Santa Ana, Ca $92705 \quad$ Fax 714 957-4965
 www.exterieurvert.com
 Fax 714 957-4965
 Minilini ML6 10.06

[^4]: Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

[^5]: Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

[^6]: * In the drawing above, the distance from the bottom of the fixture to the top of the Transjack connector equals 4.75". This represents the standard (ST) length for this fixture. ST measurements in the product ordering tables are approximate for stem suspended fixtures and do not represent exact overall length. For exact ST measurements for stem suspended fixtures, reference the specification drawings.

[^7]: Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

[^8]: Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

